IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000182.html
   My bibliography  Save this article

Adaptation and Selective Information Transmission in the Cricket Auditory Neuron AN2

Author

Listed:
  • Klaus Wimmer
  • K Jannis Hildebrandt
  • R Matthias Hennig
  • Klaus Obermayer

Abstract

Sensory systems adapt their neural code to changes in the sensory environment, often on multiple time scales. Here, we report a new form of adaptation in a first-order auditory interneuron (AN2) of crickets. We characterize the response of the AN2 neuron to amplitude-modulated sound stimuli and find that adaptation shifts the stimulus–response curves toward higher stimulus intensities, with a time constant of 1.5 s for adaptation and recovery. The spike responses were thus reduced for low-intensity sounds. We then address the question whether adaptation leads to an improvement of the signal's representation and compare the experimental results with the predictions of two competing hypotheses: infomax, which predicts that information conveyed about the entire signal range should be maximized, and selective coding, which predicts that “foreground” signals should be enhanced while “background” signals should be selectively suppressed. We test how adaptation changes the input–response curve when presenting signals with two or three peaks in their amplitude distributions, for which selective coding and infomax predict conflicting changes. By means of Bayesian data analysis, we quantify the shifts of the measured response curves and also find a slight reduction of their slopes. These decreases in slopes are smaller, and the absolute response thresholds are higher than those predicted by infomax. Most remarkably, and in contrast to the infomax principle, adaptation actually reduces the amount of encoded information when considering the whole range of input signals. The response curve changes are also not consistent with the selective coding hypothesis, because the amount of information conveyed about the loudest part of the signal does not increase as predicted but remains nearly constant. Less information is transmitted about signals with lower intensity.Author Summary: Sensory systems have the ability to adapt to changes in the environment. In a quiet room, the nervous system is very responsive, so that even a whisper can be easily understood. In contrast, the perceived loudness on a crowded street will be reduced to prevent an overload of the nervous system. Two different hypotheses have been proposed to explain how the nervous system achieves this adaptation. According to one idea, all present sensory signals are equally enhanced, so that the whole range of input signals is reliably represented. On the other hand, the aim of the nervous system may be to extract the most important parts of the acoustic signal, for example, an approaching car, and thus abolish the irrelevant rest. To address which of these two principles is implemented in the auditory system of the cricket, we investigated the responses of a single auditory neuron, called interneuron AN2, to different sound signals. We found that adaptation actually reduces the amount of encoded information when considering the whole range of input signals. However, the changes were also not in agreement with the idea that only the most important signal is transmitted, because the amount of information conveyed about the loudest part of the signal does not increase. Thus, we here report the unusual case of a reduction of information transfer by adaptation, while in most other systems reported of so far adaptation actually enhances coding of sensory information.

Suggested Citation

  • Klaus Wimmer & K Jannis Hildebrandt & R Matthias Hennig & Klaus Obermayer, 2008. "Adaptation and Selective Information Transmission in the Cricket Auditory Neuron AN2," PLOS Computational Biology, Public Library of Science, vol. 4(9), pages 1-18, September.
  • Handle: RePEc:plo:pcbi00:1000182
    DOI: 10.1371/journal.pcbi.1000182
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000182
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000182&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miguel Maravall & Rasmus S Petersen & Adrienne L Fairhall & Ehsan Arabzadeh & Mathew E Diamond, 2007. "Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex," PLOS Biology, Public Library of Science, vol. 5(2), pages 1-12, January.
    2. Adrienne L. Fairhall & Geoffrey D. Lewen & William Bialek & Robert R. de Ruyter van Steveninck, 2001. "Efficiency and ambiguity in an adaptive neural code," Nature, Nature, vol. 412(6849), pages 787-792, August.
    3. Israel Nelken & Yaron Rotman & Omer Bar Yosef, 1999. "Responses of auditory-cortex neurons to structural features of natural sounds," Nature, Nature, vol. 397(6715), pages 154-157, January.
    4. Tatyana O. Sharpee & Hiroki Sugihara & Andrei V. Kurgansky & Sergei P. Rebrik & Michael P. Stryker & Kenneth D. Miller, 2006. "Adaptive filtering enhances information transmission in visual cortex," Nature, Nature, vol. 439(7079), pages 936-942, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasuhiro Tsubo & Yoshikazu Isomura & Tomoki Fukai, 2012. "Power-Law Inter-Spike Interval Distributions Infer a Conditional Maximization of Entropy in Cortical Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-11, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Schaffner & Sherry Dongqi Bao & Philippe N. Tobler & Todd A. Hare & Rafael Polania, 2023. "Sensory perception relies on fitness-maximizing codes," Nature Human Behaviour, Nature, vol. 7(7), pages 1135-1151, July.
    2. Johnatan Aljadeff & Ronen Segev & Michael J Berry II & Tatyana O Sharpee, 2013. "Spike Triggered Covariance in Strongly Correlated Gaussian Stimuli," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-12, September.
    3. Sungho Hong & Brian Nils Lundstrom & Adrienne L Fairhall, 2008. "Intrinsic Gain Modulation and Adaptive Neural Coding," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-11, July.
    4. Arne F Meyer & Jan-Philipp Diepenbrock & Max F K Happel & Frank W Ohl & Jörn Anemüller, 2014. "Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-15, April.
    5. Jonathan Rubin & Nachum Ulanovsky & Israel Nelken & Naftali Tishby, 2016. "The Representation of Prediction Error in Auditory Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.
    6. Noga Mosheiff & Haggai Agmon & Avraham Moriel & Yoram Burak, 2017. "An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    7. Corentin Massot & Adam D Schneider & Maurice J Chacron & Kathleen E Cullen, 2012. "The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion," PLOS Biology, Public Library of Science, vol. 10(7), pages 1-20, July.
    8. Richard Naud & Wulfram Gerstner, 2012. "Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-14, October.
    9. Gabriel D Puccini & Albert Compte & Miguel Maravall, 2006. "Stimulus Dependence of Barrel Cortex Directional Selectivity," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-6, December.
    10. Braden A W Brinkman & Alison I Weber & Fred Rieke & Eric Shea-Brown, 2016. "How Do Efficient Coding Strategies Depend on Origins of Noise in Neural Circuits?," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-34, October.
    11. Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    12. Omer Mano & Damon A Clark, 2017. "Graphics Processing Unit-Accelerated Code for Computing Second-Order Wiener Kernels and Spike-Triggered Covariance," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-11, January.
    13. Jerome Carriot & Graham McAllister & Hamed Hooshangnejad & Isabelle Mackrous & Kathleen E. Cullen & Maurice J. Chacron, 2022. "Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. J. Gerard Wolff, 2019. "Information Compression as a Unifying Principle in Human Learning, Perception, and Cognition," Complexity, Hindawi, vol. 2019, pages 1-38, February.
    15. Jacob N Oppenheim & Pavel Isakov & Marcelo O Magnasco, 2013. "Degraded Time-Frequency Acuity to Time-Reversed Notes," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-6, June.
    16. Julie E Elie & Frédéric E Theunissen, 2019. "Invariant neural responses for sensory categories revealed by the time-varying information for communication calls," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-43, September.
    17. Matthew F. Tang & Ehsan Kheradpezhouh & Conrad C. Y. Lee & J. Edwin Dickinson & Jason B. Mattingley & Ehsan Arabzadeh, 2023. "Expectation violations enhance neuronal encoding of sensory information in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Jeffrey D Fitzgerald & Ryan J Rowekamp & Lawrence C Sincich & Tatyana O Sharpee, 2011. "Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-9, October.
    19. Skander Mensi & Olivier Hagens & Wulfram Gerstner & Christian Pozzorini, 2016. "Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-38, February.
    20. Christian E Stilp & Keith R Kluender, 2012. "Efficient Coding and Statistically Optimal Weighting of Covariance among Acoustic Attributes in Novel Sounds," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-13, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.