IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030060.html
   My bibliography  Save this article

Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch

Author

Listed:
  • Keun-Young Kim
  • Jin Wang

Abstract

Finding a multidimensional potential landscape is the key for addressing important global issues, such as the robustness of cellular networks. We have uncovered the underlying potential energy landscape of a simple gene regulatory network: a toggle switch. This was realized by explicitly constructing the steady state probability of the gene switch in the protein concentration space in the presence of the intrinsic statistical fluctuations due to the small number of proteins in the cell. We explored the global phase space for the system. We found that the protein synthesis rate and the unbinding rate of proteins to the gene were small relative to the protein degradation rate; the gene switch is monostable with only one stable basin of attraction. When both the protein synthesis rate and the unbinding rate of proteins to the gene are large compared with the protein degradation rate, two global basins of attraction emerge for a toggle switch. These basins correspond to the biologically stable functional states. The potential energy barrier between the two basins determines the time scale of conversion from one to the other. We found as the protein synthesis rate and protein unbinding rate to the gene relative to the protein degradation rate became larger, the potential energy barrier became larger. This also corresponded to systems with less noise or the fluctuations on the protein numbers. It leads to the robustness of the biological basins of the gene switches. The technique used here is general and can be applied to explore the potential energy landscape of the gene networks.: Cellular networks are at the heart of systems biology at present. To understand how cellular networks function in these highly fluctuating environments, a global approach is needed. Here we provide a global framework, in terms of potential landscapes, for studying the gene regulatory networks in the presence of the intrinsic statistical fluctuations. We uncovered the underlying landscape for the network. We identified the basins of attraction of the landscape as the biological functional states. The potential barrier between the two basins determines the time scale of conversion from one to the other. The robustness of the biological functional states of the network, the gene switches in this case, can be guaranteed if the conversions among the basins of attraction are not frequent, or, in other words, the barriers among the basins are relatively large. More detailed features of the network, such as the key genes or regulating links relevant to diseases (i.e., cancers), can be uncovered from the underlying landscape. Our technique is general and can be applied to explore the potential landscape of more realistic gene networks. Furthermore, our approach can also be helpful in guiding the network optimal design for synthetic biology.

Suggested Citation

  • Keun-Young Kim & Jin Wang, 2007. "Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-13, March.
  • Handle: RePEc:plo:pcbi00:0030060
    DOI: 10.1371/journal.pcbi.0030060
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030060
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030060&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    2. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    3. Johan Paulsson, 2004. "Summing up the noise in gene networks," Nature, Nature, vol. 427(6973), pages 415-418, January.
    4. Lingchong You & Robert Sidney Cox & Ron Weiss & Frances H. Arnold, 2004. "Programmed population control by cell–cell communication and regulated killing," Nature, Nature, vol. 428(6985), pages 868-871, April.
    5. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    6. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    7. Nicholas J. Guido & Xiao Wang & David Adalsteinsson & David McMillen & Jeff Hasty & Charles R. Cantor & Timothy C. Elston & J. J. Collins, 2006. "A bottom-up approach to gene regulation," Nature, Nature, vol. 439(7078), pages 856-860, February.
    8. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Hallen & Bochong Li & Yu Tanouchi & Cheemeng Tan & Mike West & Lingchong You, 2011. "Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
    2. Samanthe M Lyons & Wenlong Xu & June Medford & Ashok Prasad, 2014. "Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-16, March.
    3. Wio, H.S. & Deza, J.I. & Sánchez, A.D. & García-García, R. & Gallego, R. & Revelli, J.A. & Deza, R.R., 2022. "The nonequilibrium potential today: A short review," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    4. Shintaro Nagata & Macoto Kikuchi, 2020. "Emergence of cooperative bistability and robustness of gene regulatory networks," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    2. Ashty S. Karim & Dylan M. Brown & Chloé M. Archuleta & Sharisse Grannan & Ludmilla Aristilde & Yogesh Goyal & Josh N. Leonard & Niall M. Mangan & Arthur Prindle & Gabriel J. Rocklin & Keith J. Tyo & L, 2024. "Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    4. Graham Rockwell & Nicholas J Guido & George M Church, 2013. "Redirector: Designing Cell Factories by Reconstructing the Metabolic Objective," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-15, January.
    5. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    6. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    7. Chen Jia & Ramon Grima, 2024. "Holimap: an accurate and efficient method for solving stochastic gene network dynamics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    9. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    10. Luis Mier-y-Terán-Romero & Mary Silber & Vassily Hatzimanikatis, 2010. "The Origins of Time-Delay in Template Biopolymerization Processes," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-15, April.
    11. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    13. Nagarajan, Radhakrishnan, 2007. "Delay estimation in a two-node acyclic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 725-737.
    14. Liu, Xian & Wang, Jinzhi & Huang, Lin, 2007. "Global synchronization for a class of dynamical complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 543-556.
    15. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    16. Evgeni V Nikolaev & Eduardo D Sontag, 2016. "Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-33, April.
    17. Zomorrodi, Ali R. & Maranas, Costas D., 2014. "Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits," European Journal of Operational Research, Elsevier, vol. 237(2), pages 665-676.
    18. Liu, Xian & Wang, Jinzhi & Huang, Lin, 2007. "Stabilization of a class of dynamical complex networks based on decentralized control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 733-744.
    19. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    20. Alex J. H. Fedorec & Neythen J. Treloar & Ke Yan Wen & Linda Dekker & Qing Hsuan Ong & Gabija Jurkeviciute & Enbo Lyu & Jack W. Rutter & Kathleen J. Y. Zhang & Luca Rosa & Alexey Zaikin & Chris P. Bar, 2024. "Emergent digital bio-computation through spatial diffusion and engineered bacteria," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.