IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v428y2004i6985d10.1038_nature02491.html
   My bibliography  Save this article

Programmed population control by cell–cell communication and regulated killing

Author

Listed:
  • Lingchong You

    (California Institute of Technology)

  • Robert Sidney Cox

    (California Institute of Technology)

  • Ron Weiss

    (Princeton University)

  • Frances H. Arnold

    (California Institute of Technology)

Abstract

De novo engineering of gene circuits inside cells is extremely difficult1,2,3,4,5,6,7,8,9, and efforts to realize predictable and robust performance must deal with noise in gene expression and variation in phenotypes between cells10,11,12. Here we demonstrate that by coupling gene expression to cell survival and death using cell–cell communication, we can programme the dynamics of a population despite variability in the behaviour of individual cells. Specifically, we have built and characterized a ‘population control’ circuit that autonomously regulates the density of an Escherichia coli population. The cell density is broadcasted and detected by elements from a bacterial quorum-sensing system13,14, which in turn regulate the death rate. As predicted by a simple mathematical model, the circuit can set a stable steady state in terms of cell density and gene expression that is easily tunable by varying the stability of the cell–cell communication signal. This circuit incorporates a mechanism for programmed death in response to changes in the environment, and allows us to probe the design principles of its more complex natural counterparts.

Suggested Citation

  • Lingchong You & Robert Sidney Cox & Ron Weiss & Frances H. Arnold, 2004. "Programmed population control by cell–cell communication and regulated killing," Nature, Nature, vol. 428(6985), pages 868-871, April.
  • Handle: RePEc:nat:nature:v:428:y:2004:i:6985:d:10.1038_nature02491
    DOI: 10.1038/nature02491
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02491
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keun-Young Kim & Jin Wang, 2007. "Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-13, March.
    2. Anna-Maria Makri Pistikou & Glenn A. O. Cremers & Bryan L. Nathalia & Theodorus J. Meuleman & Bas W. A. Bögels & Bruno V. Eijkens & Anne Dreu & Maarten T. H. Bezembinder & Oscar M. J. A. Stassen & Car, 2023. "Engineering a scalable and orthogonal platform for synthetic communication in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Chae Won Kang & Hyun Gyu Lim & Jaehyuk Won & Sanghak Cha & Giyoung Shin & Jae-Seong Yang & Jaeyoung Sung & Gyoo Yeol Jung, 2022. "Circuit-guided population acclimation of a synthetic microbial consortium for improved biochemical production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Zhaoshou Wang & Xin Wu & Jianghai Peng & Yidan Hu & Baishan Fang & Shiyang Huang, 2014. "Artificially Constructed Quorum-Sensing Circuits Are Used for Subtle Control of Bacterial Population Density," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-7, August.
    5. Yu-Yu Cheng & Zhengyi Chen & Xinyun Cao & Tyler D. Ross & Tanya G. Falbel & Briana M. Burton & Ophelia S. Venturelli, 2023. "Programming bacteria for multiplexed DNA detection," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:428:y:2004:i:6985:d:10.1038_nature02491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.