IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007969.html
   My bibliography  Save this article

Emergence of cooperative bistability and robustness of gene regulatory networks

Author

Listed:
  • Shintaro Nagata
  • Macoto Kikuchi

Abstract

Gene regulatory networks (GRNs) are complex systems in which many genes regulate mutually to adapt the cell state to environmental conditions. In addition to function, the GRNs possess several kinds of robustness. This robustness means that systems do not lose their functionality when exposed to disturbances such as mutations or noise, and is widely observed at many levels in living systems. Both function and robustness have been acquired through evolution. In this respect, GRNs utilized in living systems are rare among all possible GRNs. In this study, we explored the fitness landscape of GRNs and investigated how robustness emerged in highly-fit GRNs. We considered a toy model of GRNs with one input gene and one output gene. The difference in the expression level of the output gene between two input states, “on” and “off”, was considered as fitness. Thus, the determination of the fitness of a GRN was based on how sensitively it responded to the input. We employed the multicanonical Monte Carlo method, which can sample GRNs randomly in a wide range of fitness levels, and classified the GRNs according to their fitness. As a result, the following properties were found: (1) Highly-fit GRNs exhibited bistability for intermediate input between “on” and “off”. This means that such GRNs responded to two input states by using different fixed points of dynamics. This bistability emerges necessarily as fitness increases. (2) These highly-fit GRNs were robust against noise because of their bistability. In other words, noise robustness is a byproduct of high fitness. (3) GRNs that were robust against mutations were not extremely rare among the highly-fit GRNs. This implies that mutational robustness is readily acquired through the evolutionary process. These properties are universal irrespective of the evolutionary pathway, because the results do not rely on evolutionary simulation.Author summary: Living systems have developed through a long history of Darwinian evolution. They acquired characteristic properties distinct from other physical systems; one is biological function. Another important property, which is overlooked by non-experts, is robustness to noise and mutation. Here, robustness means that a system does not lose its functionality when exposed to disturbances. Then, how do they relate to each other? In this paper, we explored this question using a toy model of gene regulatory networks (GRNs). While evolutionary simulations are usually used for such purposes, we instead generated GRNs randomly and classified them according to functionality. By requiring sensitive responses to environmental change as a function, we found that bistability emerges as a common property of highly-functional GRNs. Since this property does not depend on a particular evolutionary pathway, if the evolution was rewound and repeated over and over again, phenotypes with the same property would always evolve. At the same time, such bistable GRNs were robust to noise. We also found that GRNs robust to mutation were not extremely rare among the highly-functional GRNs. This implies that mutational robustness would be readily acquired through evolution.

Suggested Citation

  • Shintaro Nagata & Macoto Kikuchi, 2020. "Emergence of cooperative bistability and robustness of gene regulatory networks," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-24, June.
  • Handle: RePEc:plo:pcbi00:1007969
    DOI: 10.1371/journal.pcbi.1007969
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007969
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007969&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    2. Akimasa Kitajima & Macoto Kikuchi, 2015. "Numerous but Rare: An Exploration of Magic Squares," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-7, May.
    3. Yukito Iba & Nen Saito & Akimasa Kitajima, 2014. "Multicanonical MCMC for sampling rare events: an illustrative review," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 611-645, June.
    4. Keun-Young Kim & Jin Wang, 2007. "Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-13, March.
    5. Ertugrul M. Ozbudak & Mukund Thattai & Han N. Lim & Boris I. Shraiman & Alexander van Oudenaarden, 2004. "Multistability in the lactose utilization network of Escherichia coli," Nature, Nature, vol. 427(6976), pages 737-740, February.
    6. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    7. Mark Isalan & Caroline Lemerle & Konstantinos Michalodimitrakis & Carsten Horn & Pedro Beltrao & Emanuele Raineri & Mireia Garriga-Canut & Luis Serrano, 2008. "Evolvability and hierarchy in rewired bacterial gene networks," Nature, Nature, vol. 452(7189), pages 840-845, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    2. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    3. Javier Santos-Moreno & Eve Tasiudi & Hadiastri Kusumawardhani & Joerg Stelling & Yolanda Schaerli, 2023. "Robustness and innovation in synthetic genotype networks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Payne, Joshua L., 2016. "No tradeoff between versatility and robustness in gene circuit motifs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 192-199.
    5. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    6. Samanthe M Lyons & Wenlong Xu & June Medford & Ashok Prasad, 2014. "Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-16, March.
    7. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    8. Mark Hallen & Bochong Li & Yu Tanouchi & Cheemeng Tan & Mike West & Lingchong You, 2011. "Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
    9. Nasimul Noman & Taku Monjo & Pablo Moscato & Hitoshi Iba, 2015. "Evolving Robust Gene Regulatory Networks," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-21, January.
    10. Carl Song & Hilary Phenix & Vida Abedi & Matthew Scott & Brian P Ingalls & Mads Kærn & Theodore J Perkins, 2010. "Estimating the Stochastic Bifurcation Structure of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-11, March.
    11. Tadamune Kaneko & Macoto Kikuchi, 2022. "Evolution enhances mutational robustness and suppresses the emergence of a new phenotype: A new computational approach for studying evolution," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-20, January.
    12. Xu, Yong & Zhu, Ya-nan & Shen, Jianwei & Su, Jianbin, 2014. "Switch dynamics for stochastic model of genetic toggle switch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 461-466.
    13. Marc Weber & Javier Buceta, 2013. "Stochastic Stabilization of Phenotypic States: The Genetic Bistable Switch as a Case Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    14. Kazunari Mouri & Jose C Nacher & Tatsuya Akutsu, 2009. "A Mathematical Model for the Detection Mechanism of DNA Double-Strand Breaks Depending on Autophosphorylation of ATM," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-14, April.
    15. Sam F Greenbury & Steffen Schaper & Sebastian E Ahnert & Ard A Louis, 2016. "Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-27, March.
    16. Lai, Qiang & Norouzi, Benyamin & Liu, Feng, 2018. "Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 230-245.
    17. Paul Miller & Anatol M Zhabotinsky & John E Lisman & Xiao-Jing Wang, 2005. "The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover," PLOS Biology, Public Library of Science, vol. 3(4), pages 1-1, March.
    18. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    19. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    20. Wio, H.S. & Deza, J.I. & Sánchez, A.D. & García-García, R. & Gallego, R. & Revelli, J.A. & Deza, R.R., 2022. "The nonequilibrium potential today: A short review," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.