IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002209.html
   My bibliography  Save this article

Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks

Author

Listed:
  • Mark Hallen
  • Bochong Li
  • Yu Tanouchi
  • Cheemeng Tan
  • Mike West
  • Lingchong You

Abstract

Cellular processes are “noisy”. In each cell, concentrations of molecules are subject to random fluctuations due to the small numbers of these molecules and to environmental perturbations. While noise varies with time, it is often measured at steady state, for example by flow cytometry. When interrogating aspects of a cellular network by such steady-state measurements of network components, a key need is to develop efficient methods to simulate and compute these distributions. We describe innovations in stochastic modeling coupled with approaches to this computational challenge: first, an approach to modeling intrinsic noise via solution of the chemical master equation, and second, a convolution technique to account for contributions of extrinsic noise. We show how these techniques can be combined in a streamlined procedure for evaluation of different sources of variability in a biochemical network. Evaluation and illustrations are given in analysis of two well-characterized synthetic gene circuits, as well as a signaling network underlying the mammalian cell cycle entry. Author Summary: Variability from one cell to another is a pronounced and universal trend in living organisms; much of this variability is related to varying concentrations of proteins and other chemical species across the cells. Understanding this variability is necessary if we are to fully understand cellular functions, particularly the ways in which cells differ from each other and in which cells with the same origin behave in different ways (e.g. in human development and cancer). When using a chemical model for some aspect of cellular function, one needs to consider two sources of variability: intrinsic variability, which results from the reactions proceeding as in the model but naturally varying because of the finite number of molecules in the cells and their random behavior; and extrinsic variability, which results from other kinds of variation not accounted for in the specific, deterministic model. We present new methods to model and compute both kinds of variability, to facilitate the study of cellular variability as a whole. Our methods provide advantages in speed, accuracy, and scope of mechanisms modeled, and we apply them to experimental data, demonstrating the nature of intrinsic and extrinsic noise in those systems.

Suggested Citation

  • Mark Hallen & Bochong Li & Yu Tanouchi & Cheemeng Tan & Mike West & Lingchong You, 2011. "Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
  • Handle: RePEc:plo:pcbi00:1002209
    DOI: 10.1371/journal.pcbi.1002209
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002209
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002209&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keun-Young Kim & Jin Wang, 2007. "Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-13, March.
    2. Christopher V. Rao & Denise M. Wolf & Adam P. Arkin, 2002. "Control, exploitation and tolerance of intracellular noise," Nature, Nature, vol. 420(6912), pages 231-237, November.
    3. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis G Aviziotis & Michail E Kavousanakis & Andreas G Boudouvis, 2015. "Effect of Intrinsic Noise on the Phenotype of Cell Populations Featuring Solution Multiplicity: An Artificial lac Operon Network Paradigm," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
    2. Bonassi Fernando V. & You Lingchong & West Mike, 2011. "Bayesian Learning from Marginal Data in Bionetwork Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, October.
    3. Tina Toni & Bruce Tidor, 2013. "Combined Model of Intrinsic and Extrinsic Variability for Computational Network Design with Application to Synthetic Biology," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samanthe M Lyons & Wenlong Xu & June Medford & Ashok Prasad, 2014. "Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-16, March.
    2. Ankit Gupta & Corentin Briat & Mustafa Khammash, 2014. "A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-16, June.
    3. Lucia Marucci & David A W Barton & Irene Cantone & Maria Aurelia Ricci & Maria Pia Cosma & Stefania Santini & Diego di Bernardo & Mario di Bernardo, 2009. "How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    4. Shintaro Nagata & Macoto Kikuchi, 2020. "Emergence of cooperative bistability and robustness of gene regulatory networks," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-24, June.
    5. Junjie Luo & Jun Wang & Ting Martin Ma & Zhirong Sun, 2010. "Reverse Engineering of Bacterial Chemotaxis Pathway via Frequency Domain Analysis," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    6. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    7. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    9. Lucy Ham & Megan A. Coomer & Kaan Öcal & Ramon Grima & Michael P. H. Stumpf, 2024. "A stochastic vs deterministic perspective on the timing of cellular events," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    11. Wio, H.S. & Deza, J.I. & Sánchez, A.D. & García-García, R. & Gallego, R. & Revelli, J.A. & Deza, R.R., 2022. "The nonequilibrium potential today: A short review," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    12. Chen Jia & Ramon Grima, 2024. "Holimap: an accurate and efficient method for solving stochastic gene network dynamics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    14. Shivang Hina-Nilesh Joshi & Chentao Yong & Andras Gyorgy, 2022. "Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    16. Luis Mier-y-Terán-Romero & Mary Silber & Vassily Hatzimanikatis, 2010. "The Origins of Time-Delay in Template Biopolymerization Processes," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-15, April.
    17. Ashty S. Karim & Dylan M. Brown & Chloé M. Archuleta & Sharisse Grannan & Ludmilla Aristilde & Yogesh Goyal & Josh N. Leonard & Niall M. Mangan & Arthur Prindle & Gabriel J. Rocklin & Keith J. Tyo & L, 2024. "Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Bonassi Fernando V. & You Lingchong & West Mike, 2011. "Bayesian Learning from Marginal Data in Bionetwork Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, October.
    19. Zhdanov, Vladimir P., 2011. "Periodic perturbation of the bistable kinetics of gene expression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 57-64.
    20. Tatiana Baumuratova & Simona Dobre & Thierry Bastogne & Thomas Sauter, 2013. "Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.