IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0020098.html
   My bibliography  Save this article

Molecular Simulations of Cotranslational Protein Folding: Fragment Stabilities, Folding Cooperativity, and Trapping in the Ribosome

Author

Listed:
  • Adrian H Elcock

Abstract

Although molecular simulation methods have yielded valuable insights into mechanistic aspects of protein refolding in vitro, they have up to now not been used to model the folding of proteins as they are actually synthesized by the ribosome. To address this issue, we report here simulation studies of three model proteins: chymotrypsin inhibitor 2 (CI2), barnase, and Semliki forest virus protein (SFVP), and directly compare their folding during ribosome-mediated synthesis with their refolding from random, denatured conformations. To calibrate the methodology, simulations are first compared with in vitro data on the folding stabilities of N-terminal fragments of CI2 and barnase; the simulations reproduce the fact that both the stability and thermal folding cooperativity increase as fragments increase in length. Coupled simulations of synthesis and folding for the same two proteins are then described, showing that both fold essentially post-translationally, with mechanisms effectively identical to those for refolding. In both cases, confinement of the nascent polypeptide chain within the ribosome tunnel does not appear to promote significant formation of native structure during synthesis; there are however clear indications that the formation of structure within the nascent chain is sensitive to location within the ribosome tunnel, being subject to both gain and loss as the chain lengthens. Interestingly, simulations in which CI2 is artificially stabilized show a pronounced tendency to become trapped within the tunnel in partially folded conformations: non-cooperative folding, therefore, appears in the simulations to exert a detrimental effect on the rate at which fully folded conformations are formed. Finally, simulations of the two-domain protease module of SFVP, which experimentally folds cotranslationally, indicate that for multi-domain proteins, ribosome-mediated folding may follow different pathways from those taken during refolding. Taken together, these studies provide a first step toward developing more realistic methods for simulating protein folding as it occurs in vivo.Synopsis: The question of how proteins fold into their three-dimensional native conformations continues to be a subject of considerable interest, in large part because misfolding or aggregation of proteins is associated with a number of important diseases. Most previous research has focused on how proteins refold from denatured conformations in vitro, and much of the experimentally observed behavior has proven to be explicable with molecular simulations performed on computers. Recently attention has begun to move toward understanding protein folding as it occurs in vivo, which development requires, among other things, consideration of potential interactions with chaperonins and non-specific crowding effects due to the high macromolecular concentrations encountered in physiological conditions. Also under increasing consideration experimentally is the possibility that proteins might begin to fold while being synthesized (i.e., cotranslational folding), and the purpose of this work is therefore to develop and apply a first molecular simulation strategy capable of modeling this process. The simulations thus described, while not free of assumptions and approximations, nevertheless provide some intriguing glimpses into how the process of protein folding might be modulated through coupling to synthesis within the large ribosomal subunit.

Suggested Citation

  • Adrian H Elcock, 2006. "Molecular Simulations of Cotranslational Protein Folding: Fragment Stabilities, Folding Cooperativity, and Trapping in the Ribosome," PLOS Computational Biology, Public Library of Science, vol. 2(7), pages 1-18, July.
  • Handle: RePEc:plo:pcbi00:0020098
    DOI: 10.1371/journal.pcbi.0020098
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020098
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0020098&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0020098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher D. Snow & Houbi Nguyen & Vijay S. Pande & Martin Gruebele, 2002. "Absolute comparison of simulated and experimental protein-folding dynamics," Nature, Nature, vol. 420(6911), pages 102-106, November.
    2. William J. Netzer & F. Ulrich Hartl, 1997. "Recombination of protein domains facilitated by co-translational folding in eukaryotes," Nature, Nature, vol. 388(6640), pages 343-349, July.
    3. David Baker, 2000. "A surprising simplicity to protein folding," Nature, Nature, vol. 405(6782), pages 39-42, May.
    4. Christopher M. Dobson, 2003. "Protein folding and misfolding," Nature, Nature, vol. 426(6968), pages 884-890, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John G Koland, 2014. "Coarse-Grained Molecular Simulation of Epidermal Growth Factor Receptor Protein Tyrosine Kinase Multi-Site Self-Phosphorylation," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minkoo Ahn & Tomasz Włodarski & Alkistis Mitropoulou & Sammy H. S. Chan & Haneesh Sidhu & Elena Plessa & Thomas A. Becker & Nediljko Budisa & Christopher A. Waudby & Roland Beckmann & Anaïs M. E. Cass, 2022. "Modulating co-translational protein folding by rational design and ribosome engineering," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Chun Wu & Joan-Emma Shea, 2010. "On the Origins of the Weak Folding Cooperativity of a Designed ββα Ultrafast Protein FSD-1," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-12, November.
    3. Yaman Arkun & Mert Gur, 2012. "Combining Optimal Control Theory and Molecular Dynamics for Protein Folding," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-8, January.
    4. Jiyong Park & Byungnam Kahng & Wonmuk Hwang, 2009. "Thermodynamic Selection of Steric Zipper Patterns in the Amyloid Cross-β Spine," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-17, September.
    5. Arthur Fischbach & Angela Johns & Kara L. Schneider & Xinxin Hao & Peter Tessarz & Thomas Nyström, 2023. "Artificial Hsp104-mediated systems for re-localizing protein aggregates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Stefano Zamuner & Flavio Seno & Antonio Trovato, 2022. "Statistical potentials from the Gaussian scaling behaviour of chain fragments buried within protein globules," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
    7. Seth Lichter & Benjamin Rafferty & Zachary Flohr & Ashlie Martini, 2012. "Protein High-Force Pulling Simulations Yield Low-Force Results," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-10, April.
    8. Corina N. D’Alessandro-Gabazza & Taro Yasuma & Tetsu Kobayashi & Masaaki Toda & Ahmed M. Abdel-Hamid & Hajime Fujimoto & Osamu Hataji & Hiroki Nakahara & Atsuro Takeshita & Kota Nishihama & Tomohito O, 2022. "Inhibition of lung microbiota-derived proapoptotic peptides ameliorates acute exacerbation of pulmonary fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    9. Kübra Kaygisiz & Lena Rauch-Wirth & Arghya Dutta & Xiaoqing Yu & Yuki Nagata & Tristan Bereau & Jan Münch & Christopher V. Synatschke & Tanja Weil, 2023. "Data-mining unveils structure–property–activity correlation of viral infectivity enhancing self-assembling peptides," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Amit K Chattopadhyay & Biswajit Debnath & Rihab El-Hassani & Sadhan Kumar Ghosh & Rahul Baidya, 2020. "Cleaner Production in Optimized Multivariate Networks: Operations Management through a Roll of Dice," Papers 2003.00884, arXiv.org.
    11. Tao Chen & Hue Sun Chan, 2015. "Native Contact Density and Nonnative Hydrophobic Effects in the Folding of Bacterial Immunity Proteins," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-27, May.
    12. Omar Haq & Michael Andrec & Alexandre V Morozov & Ronald M Levy, 2012. "Correlated Electrostatic Mutations Provide a Reservoir of Stability in HIV Protease," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-10, September.
    13. Jian Tian & Jaie C Woodard & Anna Whitney & Eugene I Shakhnovich, 2015. "Thermal Stabilization of Dihydrofolate Reductase Using Monte Carlo Unfolding Simulations and Its Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-27, April.
    14. Matthias M. Schneider & Saurabh Gautam & Therese W. Herling & Ewa Andrzejewska & Georg Krainer & Alyssa M. Miller & Victoria A. Trinkaus & Quentin A. E. Peter & Francesco Simone Ruggeri & Michele Vend, 2021. "The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    15. Eri Chatani & Yutaro Tsuchisaka & Yuki Masuda & Roumiana Tsenkova, 2014. "Water Molecular System Dynamics Associated with Amyloidogenic Nucleation as Revealed by Real Time Near Infrared Spectroscopy and Aquaphotomics," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    16. Ramon Duran-Romaña & Bert Houben & Paula Fernández Migens & Ying Zhang & Frederic Rousseau & Joost Schymkowitz, 2025. "Native Fold Delay and its implications for co-translational chaperone binding and protein aggregation," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    17. Hsin-Lin Chiang & Son Tung Ngo & Chun-Jung Chen & Chin-Kun Hu & Mai Suan Li, 2013. "Oligomerization of Peptides LVEALYL and RGFFYT and Their Binding Affinity to Insulin," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    18. Thapakorn Jaroentomeechai & Yong Hyun Kwon & Yiwen Liu & Olivia Young & Ruchika Bhawal & Joshua D. Wilson & Mingji Li & Digantkumar G. Chapla & Kelley W. Moremen & Michael C. Jewett & Dario Mizrachi &, 2022. "A universal glycoenzyme biosynthesis pipeline that enables efficient cell-free remodeling of glycans," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Marwa Mohammed M. Ghareeb & Ahmed Sharaf Eldin & Taysir Hassan A. Soliman & Mohammed Ebrahim Marie, 2013. "A Deeply Glimpse into Protein Fold Recognition," International Journal of Sciences, Office ijSciences, vol. 2(06), pages 24-33, June.
    20. Mookyung Cheon & Iksoo Chang & Sandipan Mohanty & Leila M Luheshi & Christopher M Dobson & Michele Vendruscolo & Giorgio Favrin, 2007. "Structural Reorganisation and Potential Toxicity of Oligomeric Species Formed during the Assembly of Amyloid Fibrils," PLOS Computational Biology, Public Library of Science, vol. 3(9), pages 1-12, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0020098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.