IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v388y1997i6640d10.1038_41024.html
   My bibliography  Save this article

Recombination of protein domains facilitated by co-translational folding in eukaryotes

Author

Listed:
  • William J. Netzer

    (*Cellular Biochemistry & Biophysics Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center)

  • F. Ulrich Hartl

    (*Cellular Biochemistry & Biophysics Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center
    †Max-Planck-Institut für Biochemie)

Abstract

The evolution of complex genomes requires that new combinations of pre-existing protein domains successfully fold into modular polypeptides. During eukaryotic translation model two-domain polypeptides fold efficiently by sequential and co-translational folding of their domains. In contrast, folding of the same proteins in Escherichia coli is post-translational, and leads to intramolecular misfolding of concurrently folding domains. Sequential domain folding in eukaryotes may have been critical in the evolution of modular polypeptides, by increasing the probability that random gene-fusion events resulted in immediately foldable protein structures.

Suggested Citation

  • William J. Netzer & F. Ulrich Hartl, 1997. "Recombination of protein domains facilitated by co-translational folding in eukaryotes," Nature, Nature, vol. 388(6640), pages 343-349, July.
  • Handle: RePEc:nat:nature:v:388:y:1997:i:6640:d:10.1038_41024
    DOI: 10.1038/41024
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/41024
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/41024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minkoo Ahn & Tomasz Włodarski & Alkistis Mitropoulou & Sammy H. S. Chan & Haneesh Sidhu & Elena Plessa & Thomas A. Becker & Nediljko Budisa & Christopher A. Waudby & Roland Beckmann & Anaïs M. E. Cass, 2022. "Modulating co-translational protein folding by rational design and ribosome engineering," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Thapakorn Jaroentomeechai & Yong Hyun Kwon & Yiwen Liu & Olivia Young & Ruchika Bhawal & Joshua D. Wilson & Mingji Li & Digantkumar G. Chapla & Kelley W. Moremen & Michael C. Jewett & Dario Mizrachi &, 2022. "A universal glycoenzyme biosynthesis pipeline that enables efficient cell-free remodeling of glycans," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:388:y:1997:i:6640:d:10.1038_41024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.