Combining Optimal Control Theory and Molecular Dynamics for Protein Folding
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0029628
Download full text from publisher
References listed on IDEAS
- Yaman Arkun & Burak Erman, 2010. "Prediction of Optimal Folding Routes of Proteins That Satisfy the Principle of Lowest Entropy Loss: Dynamic Contact Maps and Optimal Control," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-11, October.
- David Baker, 2000. "A surprising simplicity to protein folding," Nature, Nature, vol. 405(6782), pages 39-42, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stefano Zamuner & Flavio Seno & Antonio Trovato, 2022. "Statistical potentials from the Gaussian scaling behaviour of chain fragments buried within protein globules," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
- Seth Lichter & Benjamin Rafferty & Zachary Flohr & Ashlie Martini, 2012. "Protein High-Force Pulling Simulations Yield Low-Force Results," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-10, April.
- Amit K Chattopadhyay & Biswajit Debnath & Rihab El-Hassani & Sadhan Kumar Ghosh & Rahul Baidya, 2020. "Cleaner Production in Optimized Multivariate Networks: Operations Management through a Roll of Dice," Papers 2003.00884, arXiv.org.
- Omar Haq & Michael Andrec & Alexandre V Morozov & Ronald M Levy, 2012. "Correlated Electrostatic Mutations Provide a Reservoir of Stability in HIV Protease," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-10, September.
- Marwa Mohammed M. Ghareeb & Ahmed Sharaf Eldin & Taysir Hassan A. Soliman & Mohammed Ebrahim Marie, 2013. "A Deeply Glimpse into Protein Fold Recognition," International Journal of Sciences, Office ijSciences, vol. 2(06), pages 24-33, June.
- Yaman Arkun & Burak Erman, 2010. "Prediction of Optimal Folding Routes of Proteins That Satisfy the Principle of Lowest Entropy Loss: Dynamic Contact Maps and Optimal Control," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-11, October.
- Christopher A Brown & Kevin S Brown, 2010. "Validation of Coevolving Residue Algorithms via Pipeline Sensitivity Analysis: ELSC and OMES and ZNMI, Oh My!," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-14, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0029628. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.