IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004260.html
   My bibliography  Save this article

Native Contact Density and Nonnative Hydrophobic Effects in the Folding of Bacterial Immunity Proteins

Author

Listed:
  • Tao Chen
  • Hue Sun Chan

Abstract

The bacterial colicin-immunity proteins Im7 and Im9 fold by different mechanisms. Experimentally, at pH 7.0 and 10°C, Im7 folds in a three-state manner via an intermediate but Im9 folding is two-state-like. Accordingly, Im7 exhibits a chevron rollover, whereas the chevron arm for Im9 folding is linear. Here we address the biophysical basis of their different behaviors by using native-centric models with and without additional transferrable, sequence-dependent energies. The Im7 chevron rollover is not captured by either a pure native-centric model or a model augmented by nonnative hydrophobic interactions with a uniform strength irrespective of residue type. By contrast, a more realistic nonnative interaction scheme that accounts for the difference in hydrophobicity among residues leads simultaneously to a chevron rollover for Im7 and an essentially linear folding chevron arm for Im9. Hydrophobic residues identified by published experiments to be involved in nonnative interactions during Im7 folding are found to participate in the strongest nonnative contacts in this model. Thus our observations support the experimental perspective that the Im7 folding intermediate is largely underpinned by nonnative interactions involving large hydrophobics. Our simulation suggests further that nonnative effects in Im7 are facilitated by a lower local native contact density relative to that of Im9. In a one-dimensional diffusion picture of Im7 folding with a coordinate- and stability-dependent diffusion coefficient, a significant chevron rollover is consistent with a diffusion coefficient that depends strongly on native stability at the conformational position of the folding intermediate.Author Summary: In order to fold correctly, a globular protein must avoid being trapped in wrong, i.e., nonnative conformations. Thus a biophysical account of how attractive nonnative interactions are bypassed by some amino acid sequences but not others is key to deciphering protein structure and function. We examine two closely related bacterial immunity proteins, Im7 and Im9, that are experimentally known to fold very differently: Whereas Im9 folds directly, Im7 folds through a mispacked conformational intermediate. A simple model we developed accounts for their intriguingly different folding kinetics in terms of a balance between the density of native-promoting contacts and the hydrophobicity of local amino acid sequences. This emergent principle is extensible to other biomolecular recognition processes.

Suggested Citation

  • Tao Chen & Hue Sun Chan, 2015. "Native Contact Density and Nonnative Hydrophobic Effects in the Folding of Bacterial Immunity Proteins," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-27, May.
  • Handle: RePEc:plo:pcbi00:1004260
    DOI: 10.1371/journal.pcbi.1004260
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004260
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004260&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Baker, 2000. "A surprising simplicity to protein folding," Nature, Nature, vol. 405(6782), pages 39-42, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaman Arkun & Mert Gur, 2012. "Combining Optimal Control Theory and Molecular Dynamics for Protein Folding," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-8, January.
    2. Stefano Zamuner & Flavio Seno & Antonio Trovato, 2022. "Statistical potentials from the Gaussian scaling behaviour of chain fragments buried within protein globules," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
    3. Seth Lichter & Benjamin Rafferty & Zachary Flohr & Ashlie Martini, 2012. "Protein High-Force Pulling Simulations Yield Low-Force Results," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-10, April.
    4. Amit K Chattopadhyay & Biswajit Debnath & Rihab El-Hassani & Sadhan Kumar Ghosh & Rahul Baidya, 2020. "Cleaner Production in Optimized Multivariate Networks: Operations Management through a Roll of Dice," Papers 2003.00884, arXiv.org.
    5. Omar Haq & Michael Andrec & Alexandre V Morozov & Ronald M Levy, 2012. "Correlated Electrostatic Mutations Provide a Reservoir of Stability in HIV Protease," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-10, September.
    6. Marwa Mohammed M. Ghareeb & Ahmed Sharaf Eldin & Taysir Hassan A. Soliman & Mohammed Ebrahim Marie, 2013. "A Deeply Glimpse into Protein Fold Recognition," International Journal of Sciences, Office ijSciences, vol. 2(06), pages 24-33, June.
    7. Markus Düttmann & Markus Mittnenzweig & Yuichi Togashi & Toshio Yanagida & Alexander S Mikhailov, 2012. "Complex Intramolecular Mechanics of G-actin — An Elastic Network Study," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    8. Yaman Arkun & Burak Erman, 2010. "Prediction of Optimal Folding Routes of Proteins That Satisfy the Principle of Lowest Entropy Loss: Dynamic Contact Maps and Optimal Control," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-11, October.
    9. Adrian H Elcock, 2006. "Molecular Simulations of Cotranslational Protein Folding: Fragment Stabilities, Folding Cooperativity, and Trapping in the Ribosome," PLOS Computational Biology, Public Library of Science, vol. 2(7), pages 1-18, July.
    10. Christopher A Brown & Kevin S Brown, 2010. "Validation of Coevolving Residue Algorithms via Pipeline Sensitivity Analysis: ELSC and OMES and ZNMI, Oh My!," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.