IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000699.html
   My bibliography  Save this article

Estimating the Stochastic Bifurcation Structure of Cellular Networks

Author

Listed:
  • Carl Song
  • Hilary Phenix
  • Vida Abedi
  • Matthew Scott
  • Brian P Ingalls
  • Mads Kærn
  • Theodore J Perkins

Abstract

High throughput measurement of gene expression at single-cell resolution, combined with systematic perturbation of environmental or cellular variables, provides information that can be used to generate novel insight into the properties of gene regulatory networks by linking cellular responses to external parameters. In dynamical systems theory, this information is the subject of bifurcation analysis, which establishes how system-level behaviour changes as a function of parameter values within a given deterministic mathematical model. Since cellular networks are inherently noisy, we generalize the traditional bifurcation diagram of deterministic systems theory to stochastic dynamical systems. We demonstrate how statistical methods for density estimation, in particular, mixture density and conditional mixture density estimators, can be employed to establish empirical bifurcation diagrams describing the bistable genetic switch network controlling galactose utilization in yeast Saccharomyces cerevisiae. These approaches allow us to make novel qualitative and quantitative observations about the switching behavior of the galactose network, and provide a framework that might be useful to extract information needed for the development of quantitative network models.Author Summary: Decades ago, Waddington, and later Kauffman, likened the dynamics of a differentiating cell to a marble rolling downhill on bumpy terrain—the epigenetic landscape. In this metaphor, the valleys of the landscape represent the paths that cells can follow towards a stable cell type, and the fate of the cell is determined by the constant modulation of the epigenetic landscape by internal and external signals. With new technologies for measuring single-cell gene expression, it is increasingly feasible to map out these valleys and how external variables influence cellular responses. Moreover, it is possible to quantify population level effects, such as what fraction of a population of cells arrives at one valley or another, and variability at the cellular level, such as how individual cells bounce around within, and possibly between, valleys due to the stochasticity of cellular biochemistry. In this paper, we discuss which characteristics of the epigenetic landscape can readily be extracted from single-cell gene expression data, and describe computational methods for doing so.

Suggested Citation

  • Carl Song & Hilary Phenix & Vida Abedi & Matthew Scott & Brian P Ingalls & Mads Kærn & Theodore J Perkins, 2010. "Estimating the Stochastic Bifurcation Structure of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-11, March.
  • Handle: RePEc:plo:pcbi00:1000699
    DOI: 10.1371/journal.pcbi.1000699
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000699
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000699&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin B Kaufmann & Qiong Yang & Jerome T Mettetal & Alexander van Oudenaarden, 2007. "Heritable Stochastic Switching Revealed by Single-Cell Genealogy," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-8, September.
    2. Johannes Jaeger & Svetlana Surkova & Maxim Blagov & Hilde Janssens & David Kosman & Konstantin N. Kozlov & Manu & Ekaterina Myasnikova & Carlos E. Vanario-Alonso & Maria Samsonova & David H. Sharp & J, 2004. "Dynamic control of positional information in the early Drosophila embryo," Nature, Nature, vol. 430(6997), pages 368-371, July.
    3. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    4. Ertugrul M. Ozbudak & Mukund Thattai & Han N. Lim & Boris I. Shraiman & Alexander van Oudenaarden, 2004. "Multistability in the lactose utilization network of Escherichia coli," Nature, Nature, vol. 427(6976), pages 737-740, February.
    5. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    6. Murat Acar & Attila Becskei & Alexander van Oudenaarden, 2005. "Enhancement of cellular memory by reducing stochastic transitions," Nature, Nature, vol. 435(7039), pages 228-232, May.
    7. Matthew R. Bennett & Wyming Lee Pang & Natalie A. Ostroff & Bridget L. Baumgartner & Sujata Nayak & Lev S. Tsimring & Jeff Hasty, 2008. "Metabolic gene regulation in a dynamically changing environment," Nature, Nature, vol. 454(7208), pages 1119-1122, August.
    8. George von Dassow & Eli Meir & Edwin M. Munro & Garrett M. Odell, 2000. "The segment polarity network is a robust developmental module," Nature, Nature, vol. 406(6792), pages 188-192, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najme Khorasani & Mehdi Sadeghi & Abbas Nowzari-Dalini, 2020. "A computational model of stem cell molecular mechanism to maintain tissue homeostasis," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-25, July.
    2. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    3. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    4. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    5. Xu, Yong & Zhu, Ya-nan & Shen, Jianwei & Su, Jianbin, 2014. "Switch dynamics for stochastic model of genetic toggle switch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 461-466.
    6. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    7. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    8. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    9. Keun-Young Kim & Jin Wang, 2007. "Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-13, March.
    10. Zachary R Fox & Brian Munsky, 2019. "The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-23, January.
    11. Debasish Mondal & Edward Dougherty & Abhishek Mukhopadhyay & Adria Carbo & Guang Yao & Jianhua Xing, 2014. "Systematic Reverse Engineering of Network Topologies: A Case Study of Resettable Bistable Cellular Responses," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    12. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    13. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    14. Graham Rockwell & Nicholas J Guido & George M Church, 2013. "Redirector: Designing Cell Factories by Reconstructing the Metabolic Objective," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-15, January.
    15. Ioannis G Aviziotis & Michail E Kavousanakis & Andreas G Boudouvis, 2015. "Effect of Intrinsic Noise on the Phenotype of Cell Populations Featuring Solution Multiplicity: An Artificial lac Operon Network Paradigm," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
    16. Shintaro Nagata & Macoto Kikuchi, 2020. "Emergence of cooperative bistability and robustness of gene regulatory networks," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-24, June.
    17. Marc Weber & Javier Buceta, 2013. "Stochastic Stabilization of Phenotypic States: The Genetic Bistable Switch as a Case Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    18. Kazunari Mouri & Jose C Nacher & Tatsuya Akutsu, 2009. "A Mathematical Model for the Detection Mechanism of DNA Double-Strand Breaks Depending on Autophosphorylation of ATM," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-14, April.
    19. Benjamin B Kaufmann & Qiong Yang & Jerome T Mettetal & Alexander van Oudenaarden, 2007. "Heritable Stochastic Switching Revealed by Single-Cell Genealogy," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-8, September.
    20. Liberman, Uri & Behar, Hilla & Feldman, Marcus W., 2016. "Evolution of reduced mutation under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 112(C), pages 52-59.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.