A novel hybrid deep-learning framework for medium-term container throughput forecasting: an application to China’s Guangzhou, Qingdao and Shanghai hub ports
Author
Abstract
Suggested Citation
DOI: 10.1057/s41278-024-00284-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sang-Yoon Lee & Hyunwoo Lim & Hwa-Joong Kim, 2017. "Forecasting container port volume: implications for dredging," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 296-314, June.
- Majid Eskafi & Milad Kowsari & Ali Dastgheib & Gudmundur F. Ulfarsson & Gunnar Stefansson & Poonam Taneja & Ragnheidur I. Thorarinsdottir, 2021. "A model for port throughput forecasting using Bayesian estimation," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(2), pages 348-368, June.
- Javed Farhan & Ghim Ping Ong, 2018. "Forecasting seasonal container throughput at international ports using SARIMA models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 20(1), pages 131-148, March.
- Zhao, Miyuan & Chow, Joseph Y.J. & Ritchie, Stephen G., 2015. "An inventory-based simulation model for annual-to-daily temporal freight assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 83-101.
- Cheng-Hong Yang & Jen-Chung Shao & Yen-Hsien Liu & Pey-Huah Jou & Yu-Da Lin, 2022. "Application of Fuzzy-Based Support Vector Regression to Forecast of International Airport Freight Volumes," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
- Alexander, D.W. & Merkert, R., 2021. "Applications of gravity models to evaluate and forecast US international air freight markets post-GFC," Transport Policy, Elsevier, vol. 104(C), pages 52-62.
- Huang, Yu-ting & Bai, Yu-long & Yu, Qing-he & Ding, Lin & Ma, Yong-jie, 2022. "Application of a hybrid model based on the Prophet model, ICEEMDAN and multi-model optimization error correction in metal price prediction," Resources Policy, Elsevier, vol. 79(C).
- Gao, Tian & Niu, Dongxiao & Ji, Zhengsen & Sun, Lijie, 2022. "Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm," Energy, Elsevier, vol. 261(PB).
- Veenstra, Albert W. & Haralambides, Hercules E., 2001. "Multivariate autoregressive models for forecasting seaborne trade flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(4), pages 311-319, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng-Hong Yang & Borcy Lee & Pey-Huah Jou & Yu-Fang Chung & Yu-Da Lin, 2023. "Analysis and Forecasting of International Airport Traffic Volume," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
- Anqiang Huang & Xinjun Liu & Changrui Rao & Yi Zhang & Yifan He, 2022. "A New Container Throughput Forecasting Paradigm under COVID-19," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
- Guangying Jin & Wei Feng & Qingpu Meng, 2022. "Prediction of Waterway Cargo Transportation Volume to Support Maritime Transportation Systems Based on GA-BP Neural Network Optimization," Sustainability, MDPI, vol. 14(21), pages 1-24, October.
- Hercules E. Haralambides & Helen Thanopoulou, 2014. "The Economic Crisis of 2008 and World Shipping: Unheeded Warnings," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 64(2), pages 5-13, April-Jun.
- James Nolan & Zoe Laulederkind, 2022.
"Plane to See? Empirical Analysis of the 1999–2006 Air Cargo Cartel,"
Advances in Airline Economics, in: The International Air Cargo Industry, volume 9, pages 241-262,
Emerald Group Publishing Limited.
- Nolan, James & Laulederkind, Zoe, 2022. "Plane to see? Empirical Analysis of the 1999-2006 Air Cargo Cartel," Miscellaneous Publications 329694, University of Saskatchewan, Department of Bioresource Policy Business and Economics.
- Yang, Zhongzhen & Jiang, Zhenfeng & Notteboom, Theo & Haralambides, Hercules, 2019. "The impact of ship scrapping subsidies on fleet renewal decisions in dry bulk shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 177-189.
- Gizem Kaya & Umut Aydın & Burç Ülengin, 2023. "A Comparison of Forecasting Performance of PPML and OLS estimators: The Gravity Model in the Air Cargo Market," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 112-128, December.
- Nguyen, Quang Hai, 2024. "Modeling the volatility of international air freight: A case study of Singapore using the SARIMAX-EGARCH model," Journal of Air Transport Management, Elsevier, vol. 117(C).
- Paweł Pełka, 2023. "Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods," Energies, MDPI, vol. 16(2), pages 1-22, January.
- Cheng-Hong Yang & Jen-Chung Shao & Yen-Hsien Liu & Pey-Huah Jou & Yu-Da Lin, 2022. "Application of Fuzzy-Based Support Vector Regression to Forecast of International Airport Freight Volumes," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
- Dariusz Bernacki & Christian Lis, 2021. "Forecasting the Cargo Throughput for Small and Medium-sized Ports: Multi-stage Approach with Reference to the Multi-port System," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 208-228.
- Manuel Jaramillo & Diego Carrión, 2022. "An Adaptive Strategy for Medium-Term Electricity Consumption Forecasting for Highly Unpredictable Scenarios: Case Study Quito, Ecuador during the Two First Years of COVID-19," Energies, MDPI, vol. 15(22), pages 1-19, November.
- Geun-Cheol Lee & June-Young Bang, 2024. "Forecasting Container Throughput of Singapore Port Considering Various Exogenous Variables Based on SARIMAX Models," Forecasting, MDPI, vol. 6(3), pages 1-13, August.
- Heij, C. & Knapp, S., 2012. "Dynamics in the dry bulk market," Econometric Institute Research Papers EI 2012-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Bashiri Behmiri, Niaz & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks," Energy, Elsevier, vol. 278(C).
- M. Milenković & N. Milosavljevic & N. Bojović & S. Val, 2021. "Container flow forecasting through neural networks based on metaheuristics," Operational Research, Springer, vol. 21(2), pages 965-997, June.
- Marwa Salah EIDin Fahmy & Farhan Ahmed & Farah Durani & Štefan Bojnec & Mona Mohamed Ghareeb, 2023. "Predicting Electricity Consumption in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 16(1), pages 1-20, January.
- Jorge-Eusebio Velasco-López & Ramón-Alberto Carrasco & Jesús Serrano-Guerrero & Francisco Chiclana, 2024. "Profiling Social Sentiment in Times of Health Emergencies with Information from Social Networks and Official Statistics," Mathematics, MDPI, vol. 12(6), pages 1-23, March.
- Yasmine Rashed & Hilde Meersman & Eddy Van de Voorde & Thierry Vanelslander, 2017. "Short-term forecast of container throughout: An ARIMA-intervention model for the port of Antwerp," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 749-764, December.
- Arim Jin & Dahan Lee & Jong-Bae Park & Jae Hyung Roh, 2023. "Day-Ahead Electricity Market Price Forecasting Considering the Components of the Electricity Market Price; Using Demand Decomposition, Fuel Cost, and the Kernel Density Estimation," Energies, MDPI, vol. 16(7), pages 1-19, April.
More about this item
Keywords
Medium-term container throughput forecasting; Variational mode decomposition; VMD; Gated cycle unit; Particle swarm optimization; Combined evaluation model; Maritime logistics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:26:y:2024:i:1:d:10.1057_s41278-024-00284-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.