IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v47y2020i2d10.1007_s11116-018-9932-1.html
   My bibliography  Save this article

Commodity flow estimation for a metropolitan scale freight modeling system: supplier selection considering distribution channel using an error component logit mixture model

Author

Listed:
  • Takanori Sakai

    (Singapore-MIT Alliance for Research and Technology)

  • B. K. Bhavathrathan

    (Singapore-MIT Alliance for Research and Technology)

  • André Alho

    (Singapore-MIT Alliance for Research and Technology)

  • Tetsuro Hyodo

    (Tokyo University of Marine Science and Technology)

  • Moshe Ben-Akiva

    (Massachusetts Institute of Technology)

Abstract

Freight forecasting models have been significantly improved in recent years, especially in the field of goods vehicle behavior modeling. On the other hand, the improvements to commodity flow modeling, which provide inputs for goods vehicle simulations, were limited. Contributing to this component in urban freight modeling systems, we propose an error component logit mixture model for matching a receiver to a supplier that considers two-layers in supplier selection: distribution channels and specific suppliers. The distribution channel is an important element in freight modeling, as the type of distribution channel is relevant to various aspects of shipments and vehicle trips. The model is estimated using the data from the Tokyo Metropolitan Freight Survey. We demonstrate how typical establishment survey data (i.e. establishment and outbound shipment records) can be used to develop the model. The model captures the correlation structure of potential suppliers defined by business function and provides insights on the differences in the supplier choice by distribution channel. The reproducibility tests confirm the validity of the proposed approach, which is currently integrated into a metropolitan-scale agent-based freight modeling system, for practical use.

Suggested Citation

  • Takanori Sakai & B. K. Bhavathrathan & André Alho & Tetsuro Hyodo & Moshe Ben-Akiva, 2020. "Commodity flow estimation for a metropolitan scale freight modeling system: supplier selection considering distribution channel using an error component logit mixture model," Transportation, Springer, vol. 47(2), pages 997-1025, April.
  • Handle: RePEc:kap:transp:v:47:y:2020:i:2:d:10.1007_s11116-018-9932-1
    DOI: 10.1007/s11116-018-9932-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-018-9932-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-018-9932-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph Chow & Choon Yang & Amelia Regan, 2010. "State-of-the art of freight forecast modeling: lessons learned and the road ahead," Transportation, Springer, vol. 37(6), pages 1011-1030, November.
    2. Liedtke, Gernot, 2009. "Principles of micro-behavior commodity transport modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 795-809, September.
    3. Sakai, Takanori & Kawamura, Kazuya & Hyodo, Tetsuro, 2015. "Locational dynamics of logistics facilities: Evidence from Tokyo," Journal of Transport Geography, Elsevier, vol. 46(C), pages 10-19.
    4. Florence Toilier & Marc Serouge & Jean-Louis Routhier & Danièle Patier & Mathieu Gardrat, 2016. "How can Urban Goods Movements be Surveyed in a Megacity? The Case of the Paris Region," Post-Print halshs-01474235, HAL.
    5. Zhao, Miyuan & Chow, Joseph Y.J. & Ritchie, Stephen G., 2015. "An inventory-based simulation model for annual-to-daily temporal freight assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 83-101.
    6. Rolf Moeckel & Rick Donnelly, 2016. "A model for national freight flows, distribution centers, empty trucks and urban truck movements," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(7), pages 693-711, October.
    7. Lemp, Jason D. & Kockelman, Kara M., 2012. "Strategic sampling for large choice sets in estimation and application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 602-613.
    8. Comi, Antonio & Delle Site, Paolo & Filippi, Francesco & Nuzzolo, Agostino, 2012. "Urban Freight Transport Demand Modelling: a State of the Art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 51, pages 1-8.
    9. Roorda, Matthew J. & Cavalcante, Rinaldo & McCabe, Stephanie & Kwan, Helen, 2010. "A conceptual framework for agent-based modelling of logistics services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 18-31, January.
    10. Joan L. Walker & Moshe Ben-Akiva & Denis Bolduc, 2007. "Identification of parameters in normal error component logit-mixture (NECLM) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1095-1125.
    11. Hunt, J.D. & Stefan, K.J., 2007. "Tour-based microsimulation of urban commercial movements," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 981-1013, November.
    12. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Logit Mixture models," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 185-198.
    13. Gerard Jong & Inge Vierth & Lori Tavasszy & Moshe Ben-Akiva, 2013. "Recent developments in national and international freight transport models within Europe," Transportation, Springer, vol. 40(2), pages 347-371, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakai, Takanori & Romano Alho, André & Bhavathrathan, B.K. & Chiara, Giacomo Dalla & Gopalakrishnan, Raja & Jing, Peiyu & Hyodo, Tetsuro & Cheah, Lynette & Ben-Akiva, Moshe, 2020. "SimMobility Freight: An agent-based urban freight simulator for evaluating logistics solutions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakai, Takanori & Romano Alho, André & Bhavathrathan, B.K. & Chiara, Giacomo Dalla & Gopalakrishnan, Raja & Jing, Peiyu & Hyodo, Tetsuro & Cheah, Lynette & Ben-Akiva, Moshe, 2020. "SimMobility Freight: An agent-based urban freight simulator for evaluating logistics solutions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    2. Gerard Jong & Inge Vierth & Lori Tavasszy & Moshe Ben-Akiva, 2013. "Recent developments in national and international freight transport models within Europe," Transportation, Springer, vol. 40(2), pages 347-371, February.
    3. Megersa Abate & Inge Vierth & Rune Karlsson & Gerard Jong & Jaap Baak, 2019. "A disaggregate stochastic freight transport model for Sweden," Transportation, Springer, vol. 46(3), pages 671-696, June.
    4. Tapia, Rodrigo J. & de Jong, Gerard & Larranaga, Ana M. & Bettella Cybis, Helena B., 2020. "Application of MDCEV to infrastructure planning in regional freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 255-271.
    5. Ottemöller, Ole & Friedrich, Hanno, 2019. "Modelling change in supply-chain-structures and its effect on freight transport demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 23-42.
    6. Crainic, Teodor Gabriel & Perboli, Guido & Rosano, Mariangela, 2018. "Simulation of intermodal freight transportation systems: a taxonomy," European Journal of Operational Research, Elsevier, vol. 270(2), pages 401-418.
    7. Démare, Thibaut & Bertelle, Cyrille & Dutot, Antoine & Lévêque, Laurent, 2017. "Modeling logistic systems with an agent-based model and dynamic graphs," Journal of Transport Geography, Elsevier, vol. 62(C), pages 51-65.
    8. Gernot Liedtke & Hanno Friedrich, 2012. "Generation of logistics networks in freight transportation models," Transportation, Springer, vol. 39(6), pages 1335-1351, November.
    9. Jensen, Anders Fjendbo & Thorhauge, Mikkel & de Jong, Gerard & Rich, Jeppe & Dekker, Thijs & Johnson, Daniel & Cabral, Manuel Ojeda & Bates, John & Nielsen, Otto Anker, 2019. "A disaggregate freight transport chain choice model for Europe," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 43-62.
    10. de Bok, Michiel & Tavasszy, Lóránt & Sebastiaan Thoen,, 2022. "Application of an empirical multi-agent model for urban goods transport to analyze impacts of zero emission zones in The Netherlands," Transport Policy, Elsevier, vol. 124(C), pages 119-127.
    11. Ruan, Minyan & Lin, Jie (Jane) & Kawamura, Kazuya, 2012. "Modeling urban commercial vehicle daily tour chaining," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1169-1184.
    12. Theodore Tsekeris & Klimis Vogiatzoglou, 2011. "Spatial agent-based modeling of household and firm location with endogenous transport costs," Netnomics, Springer, vol. 12(2), pages 77-98, July.
    13. Zuo, Chengchoa & Birkin, Mark & Clarke, Graham & McEvoy, Fiona & Bloodworth, Andrew, 2018. "Reducing carbon emissions related to the transportation of aggregates: Is road or rail the solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 26-38.
    14. Gardrat, Mathieu, 2021. "Urban growth and freight transport: From sprawl to distension," Journal of Transport Geography, Elsevier, vol. 91(C).
    15. Robichet, Antoine & Nierat, Patrick, 2021. "Consequences of logistics sprawl: Order or chaos? - the case of a parcel service company in Paris metropolitan area," Journal of Transport Geography, Elsevier, vol. 90(C).
    16. Reis, Vasco, 2014. "Analysis of mode choice variables in short-distance intermodal freight transport using an agent-based model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 100-120.
    17. Christian Ambrosini & Jesus Gonzalez-Feliu & Florence Toilier, 2013. "A design methodology for scenario-analysis in urban freight modeling," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 54, pages 1-7.
    18. Alain Bonnafous & Jesus Gonzalez-Feliu & Jean-Louis Routhier, 2013. "An alternative UGM Paradigm to O-D matrices: the FRETURB model," Post-Print halshs-00844652, HAL.
    19. Márquez, Luis & Cantillo, Víctor & Paternina-Arboleda, Carlos D., 2024. "Temporal accessibility and freight generation of agricultural products: An empirical study in Colombia," Research in Transportation Economics, Elsevier, vol. 104(C).
    20. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:47:y:2020:i:2:d:10.1007_s11116-018-9932-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.