IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v42y2023i7p1823-1843.html
   My bibliography  Save this article

Effective multi‐step ahead container throughput forecasting under the complex context

Author

Listed:
  • Yi Xiao
  • Minghu Xie
  • Yi Hu
  • Ming Yi

Abstract

Accurate and effective container throughput forecasting plays an essential role in economic dispatch and port operations, especially in the complex and uncertain context of the global Covid‐19 pandemic. In light of this, this research proposes an effective multi‐step ahead forecasting model called EWT‐TCN‐KMSE. Specifically, we initially use the empirical wavelet transform (EWT) to decompose the original container throughput series into multiple components with varying frequencies. Subsequently, the state‐of‐the‐art temporal convolutional network is utilized to predict the decomposed components individually, during which an improved loss function that combines mean square error (MSE) and kernel trick is employed. Eventually, the deduced prediction results can be obtained by integrating the predicted values of each component. In particular, this research introduces the MIMO (multi‐input and multi‐output) strategy to conduct multi‐step ahead container throughput forecasting. Based on the experiments in Shanghai port and Ningbo‐Zhoushan port, it can be found that the proposed model shows its superiority over benchmark models in terms of accuracy, stability, and significance in container throughput forecasting. Therefore, our proposed model can assist port operators in their daily management and decision making.

Suggested Citation

  • Yi Xiao & Minghu Xie & Yi Hu & Ming Yi, 2023. "Effective multi‐step ahead container throughput forecasting under the complex context," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1823-1843, November.
  • Handle: RePEc:wly:jforec:v:42:y:2023:i:7:p:1823-1843
    DOI: 10.1002/for.2986
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2986
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gang Xie & Yatong Qian & Hewei Yang, 2019. "Forecasting container throughput based on wavelet transforms within a decomposition-ensemble methodology: a case study of China," Maritime Policy & Management, Taylor & Francis Journals, vol. 46(2), pages 178-200, February.
    2. Javed Farhan & Ghim Ping Ong, 2018. "Forecasting seasonal container throughput at international ports using SARIMA models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 20(1), pages 131-148, March.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Twrdy, Elen & Batista, Milan, 2016. "Modeling of container throughput in Northern Adriatic ports over the period 1990–2013," Journal of Transport Geography, Elsevier, vol. 52(C), pages 131-142.
    5. Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
    6. Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
    7. Guerrero, David & Letrouit, Lucie & Pais-Montes, Carlos, 2022. "The container transport system during Covid-19: An analysis through the prism of complex networks," Transport Policy, Elsevier, vol. 115(C), pages 113-125.
    8. Chen He & Huipo Wang & Antonio Di Crescenzo, 2021. "Container Throughput Forecasting of Tianjin-Hebei Port Group Based on Grey Combination Model," Journal of Mathematics, Hindawi, vol. 2021, pages 1-9, August.
    9. Feng-Ming Tsai & Linda J.W. Huang, 2017. "Using artificial neural networks to predict container flows between the major ports of Asia," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5001-5010, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Dong & Grifoll, Manel & Sanchez-Espigares, Jose A. & Zheng, Pengjun & Feng, Hongxiang, 2022. "Hybrid approaches for container traffic forecasting in the context of anomalous events: The case of the Yangtze River Delta region in the COVID-19 pandemic," Transport Policy, Elsevier, vol. 128(C), pages 1-12.
    2. Anqiang Huang & Xinjun Liu & Changrui Rao & Yi Zhang & Yifan He, 2022. "A New Container Throughput Forecasting Paradigm under COVID-19," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    3. Jin, Jiahuan & Ma, Mingyu & Jin, Huan & Cui, Tianxiang & Bai, Ruibin, 2023. "Container terminal daily gate in and gate out forecasting using machine learning methods," Transport Policy, Elsevier, vol. 132(C), pages 163-174.
    4. Feng, Hongxiang & Grifoll, Manel & Zheng, Pengjun, 2019. "From a feeder port to a hub port: The evolution pathways, dynamics and perspectives of Ningbo-Zhoushan port (China)," Transport Policy, Elsevier, vol. 76(C), pages 21-35.
    5. Truong Ngoc Cuong & Le Ngoc Bao Long & Hwan-Seong Kim & Sam-Sang You, 2023. "Data analytics and throughput forecasting in port management systems against disruptions: a case study of Busan Port," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 61-89, March.
    6. Bashiri Behmiri, Niaz & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks," Energy, Elsevier, vol. 278(C).
    7. Maciej Slowik & Wieslaw Urban, 2022. "Machine Learning Short-Term Energy Consumption Forecasting for Microgrids in a Manufacturing Plant," Energies, MDPI, vol. 15(9), pages 1-16, May.
    8. Francesco Parola & Giovanni Satta & Theo Notteboom & Luca Persico, 2021. "Revisiting traffic forecasting by port authorities in the context of port planning and development," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(3), pages 444-494, September.
    9. Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).
    10. Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
    11. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    12. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    13. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    14. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    15. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    16. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    17. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
    18. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    19. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    20. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:7:p:1823-1843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.