IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i11d10.1057_jors.2010.176.html
   My bibliography  Save this article

Discrete cooperative covering problems

Author

Listed:
  • O Berman

    (University of Toronto)

  • Z Drezner

    (California State University-Fullerton)

  • D Krass

    (University of Toronto)

Abstract

A family of discrete cooperative covering problems is analysed in this paper. Each facility emits a signal that decays by the distance and each demand point observes the total signal emitted by all facilities. A demand point is covered if its cumulative signal exceeds a given threshold. We wish to maximize coverage by selecting locations for p facilities from a given set of potential sites. Two other problems that can be solved by the max-cover approach are the equivalents to set covering and p-centre problems. The problems are formulated, analysed and solved on networks. Optimal and heuristic algorithms are proposed and extensive computational experiments reported.

Suggested Citation

  • O Berman & Z Drezner & D Krass, 2011. "Discrete cooperative covering problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 2002-2012, November.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:11:d:10.1057_jors.2010.176
    DOI: 10.1057/jors.2010.176
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2010.176
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2010.176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O Berman & Z Drezner, 2007. "The multiple server location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 91-99, January.
    2. Michael B. Teitz & Polly Bart, 1968. "Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph," Operations Research, INFORMS, vol. 16(5), pages 955-961, October.
    3. Osman Alp & Erhan Erkut & Zvi Drezner, 2003. "An Efficient Genetic Algorithm for the p-Median Problem," Annals of Operations Research, Springer, vol. 122(1), pages 21-42, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.
    2. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    3. Karatas, Mumtaz & Eriskin, Levent, 2021. "The minimal covering location and sizing problem in the presence of gradual cooperative coverage," European Journal of Operational Research, Elsevier, vol. 295(3), pages 838-856.
    4. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    5. Aghajani, Mojtaba & Torabi, S. Ali & Heydari, Jafar, 2020. "A novel option contract integrated with supplier selection and inventory prepositioning for humanitarian relief supply chains," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    6. Xianjun Guan & Fei Bi & Min Liu & Huayou Chen & Ligang Zhou, 2018. "Study on location allocation of earthquake emergency service depot based on hybrid multi-attribute decision making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 337-348, January.
    7. Brachner, Markus & Hvattum, Lars Magnus, 2017. "Combined emergency preparedness and operations for safe personnel transport to offshore locations," Omega, Elsevier, vol. 67(C), pages 31-41.
    8. Blanco, Víctor & Gázquez, Ricardo & Saldanha-da-Gama, Francisco, 2023. "Multi-type maximal covering location problems: Hybridizing discrete and continuous problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1040-1054.
    9. Emilio Carrizosa, 2015. "Comments on: Static and dynamic source locations in undirected networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 647-649, October.
    10. Bashiri, Mahdi & Chehrepak, Elaheh & Gomari, Saeed, 2014. "Gradual Covering Location Problem with Stochastic Radius," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Innovative Methods in Logistics and Supply Chain Management: Current Issues and Emerging Practices. Proceedings of the Hamburg International Conferenc, volume 19, pages 165-186, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oded Berman & Zvi Drezner & Arie Tamir & George Wesolowsky, 2009. "Optimal location with equitable loads," Annals of Operations Research, Springer, vol. 167(1), pages 307-325, March.
    2. Mahmoud Golabi & Seyed Mahdi Shavarani & Gokhan Izbirak, 2017. "An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1545-1565, July.
    3. Comber, Alexis & Dickie, Jennifer & Jarvis, Claire & Phillips, Martin & Tansey, Kevin, 2015. "Locating bioenergy facilities using a modified GIS-based location–allocation-algorithm: Considering the spatial distribution of resource supply," Applied Energy, Elsevier, vol. 154(C), pages 309-316.
    4. Mladenovic, Nenad & Brimberg, Jack & Hansen, Pierre & Moreno-Perez, Jose A., 2007. "The p-median problem: A survey of metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 179(3), pages 927-939, June.
    5. Alcaraz, Javier & Landete, Mercedes & Monge, Juan F., 2012. "Design and analysis of hybrid metaheuristics for the Reliability p-Median Problem," European Journal of Operational Research, Elsevier, vol. 222(1), pages 54-64.
    6. Jafar Fathali & Hossein Kakhki & Rainer Burkard, 2006. "An ant colony algorithm for the pos/neg weighted p-median problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(3), pages 229-246, September.
    7. Robert Aboolian & Oded Berman & Zvi Drezner, 2009. "The multiple server center location problem," Annals of Operations Research, Springer, vol. 167(1), pages 337-352, March.
    8. Michael Brusco & Hans-Friedrich Köhn, 2009. "Exemplar-Based Clustering via Simulated Annealing," Psychometrika, Springer;The Psychometric Society, vol. 74(3), pages 457-475, September.
    9. Lim, Seow & Kuby, Michael, 2010. "Heuristic algorithms for siting alternative-fuel stations using the Flow-Refueling Location Model," European Journal of Operational Research, Elsevier, vol. 204(1), pages 51-61, July.
    10. ReVelle, C.S. & Eiselt, H.A. & Daskin, M.S., 2008. "A bibliography for some fundamental problem categories in discrete location science," European Journal of Operational Research, Elsevier, vol. 184(3), pages 817-848, February.
    11. B. Jayalakshmi & Alok Singh, 2017. "A hybrid artificial bee colony algorithm for the p-median problem with positive/negative weights," OPSEARCH, Springer;Operational Research Society of India, vol. 54(1), pages 67-93, March.
    12. Wangshu Mu & Daoqin Tong, 2020. "On solving large p-median problems," Environment and Planning B, , vol. 47(6), pages 981-996, July.
    13. T Drezner & Z Drezner & P Kalczynski, 2011. "A cover-based competitive location model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 100-113, January.
    14. Antiopi Panteli & Basilis Boutsinas & Ioannis Giannikos, 2021. "On solving the multiple p-median problem based on biclustering," Operational Research, Springer, vol. 21(1), pages 775-799, March.
    15. Marianov, Vladimir & Serra, Daniel & ReVelle, Charles, 1999. "Location of hubs in a competitive environment," European Journal of Operational Research, Elsevier, vol. 114(2), pages 363-371, April.
    16. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    17. Burcin Bozkaya & Seda Yanik & Selim Balcisoy, 2010. "A GIS-Based Optimization Framework for Competitive Multi-Facility Location-Routing Problem," Networks and Spatial Economics, Springer, vol. 10(3), pages 297-320, September.
    18. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    19. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    20. O Berman & Z Drezner, 2007. "The multiple server location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 91-99, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:11:d:10.1057_jors.2010.176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.