IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v118y2023ics0305048323000166.html
   My bibliography  Save this article

Linear and piecewise linear formulations for a hierarchical facility location and sizing problem

Author

Listed:
  • Karatas, Mumtaz
  • Eriskin, Levent

Abstract

This paper presents a hierarchical location and sizing problem in the presence of joint partial coverage and unreliable facilities. We consider a 3-level hierarchical production-distribution system of a supply chain network in which the lowest level facilities act as the first points of contact for customers and the upper level facilities supply the lower level facilities. For the problem, we first develop an integer nonlinear program which determines the number, location, and size of two types of facilities as well as their primary and backup assignments within the network such that the weighted total demand coverage is maximized under budget constraints. Adopting a special network mapping technique, we then develop an equivalent mixed integer linear programming formulation. Next, we propose two competing piecewise linear approximations, one based on a separable programming approach and the other on a tangent line approximation method. We finally assess the performance of the three proposed formulations via numerical experiments carried out for a variety of problem instances with different sizes under three optimality gap settings and two linearization approximation error level alternatives. Our results show that both approximations are promising and outperform the exact formulation both in terms of computation time and solution quality.

Suggested Citation

  • Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
  • Handle: RePEc:eee:jomega:v:118:y:2023:i:c:s0305048323000166
    DOI: 10.1016/j.omega.2023.102850
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048323000166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2023.102850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berman, Oded & Drezner, Zvi & Krass, Dmitry & Wesolowsky, George O., 2009. "The variable radius covering problem," European Journal of Operational Research, Elsevier, vol. 196(2), pages 516-525, July.
    2. Barros, A. I. & Dekker, R. & Scholten, V., 1998. "A two-level network for recycling sand: A case study," European Journal of Operational Research, Elsevier, vol. 110(2), pages 199-214, October.
    3. Emily M. Craparo & Mumtaz Karatas & Tobias U. Kuhn, 2017. "Sensor placement in active multistatic sonar networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 287-304, June.
    4. Paul, Nicholas R. & Lunday, Brian J. & Nurre, Sarah G., 2017. "A multiobjective, maximal conditional covering location problem applied to the relocation of hierarchical emergency response facilities," Omega, Elsevier, vol. 66(PA), pages 147-158.
    5. Manish Bansal & Kiavash Kianfar, 2017. "Planar Maximum Coverage Location Problem with Partial Coverage and Rectangular Demand and Service Zones," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 152-169, February.
    6. Obreque, Carlos & Donoso, Macarena & Gutiérrez, Gabriel & Marianov, Vladimir, 2010. "A branch and cut algorithm for the hierarchical network design problem," European Journal of Operational Research, Elsevier, vol. 200(1), pages 28-35, January.
    7. Mohammad Yavari & Mohammad Mousavi-Saleh, 2021. "Restructuring hierarchical capacitated facility location problem with extended coverage radius under uncertainty," Operational Research, Springer, vol. 21(1), pages 91-138, March.
    8. Ye Shi & Xiaolong Guo & Yugang Yu, 2018. "Dynamic warehouse size planning with demand forecast and contract flexibility," International Journal of Production Research, Taylor & Francis Journals, vol. 56(3), pages 1313-1325, February.
    9. King-Wah Pang & Hau-Ling Chan, 2017. "Data mining-based algorithm for storage location assignment in a randomised warehouse," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 4035-4052, July.
    10. Berman, Oded & Krass, Dmitry & Drezner, Zvi, 2003. "The gradual covering decay location problem on a network," European Journal of Operational Research, Elsevier, vol. 151(3), pages 474-480, December.
    11. Bigotte, João F. & Krass, Dmitry & Antunes, António P. & Berman, Oded, 2010. "Integrated modeling of urban hierarchy and transportation network planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 506-522, August.
    12. Costa, Alysson M. & França, Paulo M. & Lyra Filho, Christiano, 2011. "Two-level network design with intermediate facilities: An application to electrical distribution systems," Omega, Elsevier, vol. 39(1), pages 3-13, January.
    13. Plastria, Frank & Carrizosa, Emilio, 1999. "Undesirable facility location with minimal covering objectives," European Journal of Operational Research, Elsevier, vol. 119(1), pages 158-180, November.
    14. Yang, Yuwen & Bidkhori, Hoda & Rajgopal, Jayant, 2021. "Optimizing vaccine distribution networks in low and middle-income countries," Omega, Elsevier, vol. 99(C).
    15. M. Hodgson & Soren Jacobsen, 2009. "A hierarchical location-allocation model with travel based on expected referral distances," Annals of Operations Research, Springer, vol. 167(1), pages 271-286, March.
    16. Zvi Drezner & George O. Wesolowsky & Tammy Drezner, 2004. "The gradual covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 841-855, September.
    17. Eiselt, H.A. & Marianov, Vladimir, 2009. "Gradual location set covering with service quality," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 121-130, June.
    18. Mohammadi, Mehrdad & Dehghan, Milad & Pirayesh, Amir & Dolgui, Alexandre, 2022. "Bi‐objective optimization of a stochastic resilient vaccine distribution network in the context of the COVID‐19 pandemic," Omega, Elsevier, vol. 113(C).
    19. Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
    20. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location model with concave demand," European Journal of Operational Research, Elsevier, vol. 181(2), pages 598-619, September.
    21. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    22. Jayaraman, Vaidyanathan & Gupta, Rakesh & Pirkul, Hasan, 2003. "Selecting hierarchical facilities in a service-operations environment," European Journal of Operational Research, Elsevier, vol. 147(3), pages 613-628, June.
    23. Teixeira, Joao C. & Antunes, Antonio P., 2008. "A hierarchical location model for public facility planning," European Journal of Operational Research, Elsevier, vol. 185(1), pages 92-104, February.
    24. Jack Brimberg & Robert Schieweck & Anita Schöbel, 2015. "Locating a median line with partial coverage distance," Journal of Global Optimization, Springer, vol. 62(2), pages 371-389, June.
    25. Jang, Hoon & Lee, Jun-Ho, 2019. "A hierarchical location model for determining capacities of neonatal intensive care units in Korea," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    26. Hinojosa, Y. & Puerto, J. & Fernandez, F. R., 2000. "A multiperiod two-echelon multicommodity capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 271-291, June.
    27. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    28. O Berman & Z Drezner & D Krass, 2011. "Discrete cooperative covering problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 2002-2012, November.
    29. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    30. Jeffrey D. Camm & Susan K. Norman & Stephen Polasky & Andrew R. Solow, 2002. "Nature Reserve Site Selection to Maximize Expected Species Covered," Operations Research, INFORMS, vol. 50(6), pages 946-955, December.
    31. Karatas, Mumtaz & Eriskin, Levent, 2021. "The minimal covering location and sizing problem in the presence of gradual cooperative coverage," European Journal of Operational Research, Elsevier, vol. 295(3), pages 838-856.
    32. Galvao, Roberto D. & Acosta Espejo, Luis Gonzalo & Boffey, Brian & Yates, Derek, 2006. "Load balancing and capacity constraints in a hierarchical location model," European Journal of Operational Research, Elsevier, vol. 172(2), pages 631-646, July.
    33. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    34. Oded Berman & Zvi Drezner & Dmitry Krass, 2019. "The multiple gradual cover location problem," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(6), pages 931-940, June.
    35. O Berman & Z Drezner & D Krass, 2011. "Discrete cooperative covering problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 2002-2012, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anton-Sanchez, Laura & Landete, Mercedes & Saldanha-da-Gama, Francisco, 2023. "The discrete p-center location problem with upgrading," Omega, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karatas, Mumtaz & Eriskin, Levent, 2021. "The minimal covering location and sizing problem in the presence of gradual cooperative coverage," European Journal of Operational Research, Elsevier, vol. 295(3), pages 838-856.
    2. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    3. Bashiri, Mahdi & Chehrepak, Elaheh & Gomari, Saeed, 2014. "Gradual Covering Location Problem with Stochastic Radius," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Innovative Methods in Logistics and Supply Chain Management: Current Issues and Emerging Practices. Proceedings of the Hamburg International Conferenc, volume 19, pages 165-186, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    4. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2020. "Directional approach to gradual cover: a maximin objective," Computational Management Science, Springer, vol. 17(1), pages 121-139, January.
    5. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    6. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.
    7. Rey, David & Hammad, Ahmed W. & Saberi, Meead, 2023. "Vaccine allocation policy optimization and budget sharing mechanism using reinforcement learning," Omega, Elsevier, vol. 115(C).
    8. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2021. "Directional approach to gradual cover: the continuous case," Computational Management Science, Springer, vol. 18(1), pages 25-47, January.
    9. Mehdi Ansari & Juan S. Borrero & Leonardo Lozano, 2023. "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 83-103, January.
    10. Ibarra-Rojas, O.J. & Ozuna, L. & López-Piñón, D., 2020. "The maximal covering location problem with accessibility indicators," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    11. Boffey, Brian & Galvao, Roberto & Espejo, Luis, 2007. "A review of congestion models in the location of facilities with immobile servers," European Journal of Operational Research, Elsevier, vol. 178(3), pages 643-662, May.
    12. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.
    13. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2020. "Gradual cover competitive facility location," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 333-354, June.
    14. Drezner, Zvi & Eiselt, H.A., 2024. "Competitive location models: A review," European Journal of Operational Research, Elsevier, vol. 316(1), pages 5-18.
    15. Aghajani, Mojtaba & Torabi, S. Ali & Heydari, Jafar, 2020. "A novel option contract integrated with supplier selection and inventory prepositioning for humanitarian relief supply chains," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    16. Shaker Ardakani, Elham & Gilani Larimi, Niloofar & Oveysi Nejad, Maryam & Madani Hosseini, Mahsa & Zargoush, Manaf, 2023. "A resilient, robust transformation of healthcare systems to cope with COVID-19 through alternative resources," Omega, Elsevier, vol. 114(C).
    17. Li, Xiaoming, 2023. "A two-level policy for controlling an epidemic and its dynamics," Omega, Elsevier, vol. 115(C).
    18. Murali, Pavankumar & Ordóñez, Fernando & Dessouky, Maged M., 2012. "Facility location under demand uncertainty: Response to a large-scale bio-terror attack," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 78-87.
    19. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    20. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray, 2011. "Market Coverage and Service Quality in Digital Subscriber Lines Infrastructure Planning," International Regional Science Review, , vol. 34(3), pages 368-390, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:118:y:2023:i:c:s0305048323000166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.