IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v307y2023i3p1040-1054.html
   My bibliography  Save this article

Multi-type maximal covering location problems: Hybridizing discrete and continuous problems

Author

Listed:
  • Blanco, Víctor
  • Gázquez, Ricardo
  • Saldanha-da-Gama, Francisco

Abstract

This paper introduces a general modeling framework for a multi-type maximal covering location problem in which the position of facilities in different normed spaces are simultaneously decided to maximize the demand generated by a set of points. From the need of intertwining location decisions in discrete and in continuous sets, a general hybridized problem is considered in which some types of facilities are to be located in finite sets and the others in continuous normed spaces. A natural non-linear model is proposed for which an integer linear programming reformulation is derived. A branch-and-cut algorithm is developed for better tackling the problem. The study proceeds considering the particular case in which the continuous facilities are to be located in the Euclidean plane. In this case, by taking advantage from some geometrical properties it is possible to propose an alternative integer linear programming model. The results of an extensive battery of computational experiments performed to assess the methodological contribution of this work is reported. Apart from a synthetic dataset, the different approaches are tested on a real geographical and demographic data with up to 920 demand nodes.

Suggested Citation

  • Blanco, Víctor & Gázquez, Ricardo & Saldanha-da-Gama, Francisco, 2023. "Multi-type maximal covering location problems: Hybridizing discrete and continuous problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1040-1054.
  • Handle: RePEc:eee:ejores:v:307:y:2023:i:3:p:1040-1054
    DOI: 10.1016/j.ejor.2022.10.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722008256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.10.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berman, Oded & Drezner, Zvi & Krass, Dmitry & Wesolowsky, George O., 2009. "The variable radius covering problem," European Journal of Operational Research, Elsevier, vol. 196(2), pages 516-525, July.
    2. Ratick, Samuel J. & Osleeb, Jeffrey P. & Hozumi, Dai, 2009. "Application and extension of the Moore and ReVelle Hierarchical Maximal Covering Model," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 92-101, June.
    3. Richard L. Church & Alan Murray, 2018. "Location Covering Models," Advances in Spatial Science, Springer, number 978-3-319-99846-6, February.
    4. He, Zhou & Fan, Bo & Cheng, T.C.E. & Wang, Shou-Yang & Tan, Chin-Hon, 2016. "A mean-shift algorithm for large-scale planar maximal covering location problems," European Journal of Operational Research, Elsevier, vol. 250(1), pages 65-76.
    5. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    6. Jack Elzinga & Donald W. Hearn, 1972. "Geometrical Solutions for Some Minimax Location Problems," Transportation Science, INFORMS, vol. 6(4), pages 379-394, November.
    7. George C. Moore & Charles ReVelle, 1982. "The Hierarchical Service Location Problem," Management Science, INFORMS, vol. 28(7), pages 775-780, July.
    8. Blanco, Víctor & Puerto, Justo, 2021. "Covering problems with polyellipsoids: A location analysis perspective," European Journal of Operational Research, Elsevier, vol. 289(1), pages 44-58.
    9. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    10. Karabulut, Ezgi & Aras, Necati & Kuban Altınel, İ., 2017. "Optimal sensor deployment to increase the security of the maximal breach path in border surveillance," European Journal of Operational Research, Elsevier, vol. 259(1), pages 19-36.
    11. Victor Blanco & Justo Puerto & Safae El Haj Ben Ali, 2014. "Revisiting several problems and algorithms in continuous location with $$\ell _\tau $$ ℓ τ norms," Computational Optimization and Applications, Springer, vol. 58(3), pages 563-595, July.
    12. Arana-Jiménez, Manuel & Blanco, Víctor & Fernández, Elena, 2020. "On the fuzzy maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 283(2), pages 692-705.
    13. O Berman & Z Drezner & D Krass, 2011. "Discrete cooperative covering problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 2002-2012, November.
    14. Drezner, Zvi & Kalczynski, Pawel & Salhi, Said, 2019. "The planar multiple obnoxious facilities location problem: A Voronoi based heuristic," Omega, Elsevier, vol. 87(C), pages 105-116.
    15. S. L. Hakimi, 1965. "Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems," Operations Research, INFORMS, vol. 13(3), pages 462-475, June.
    16. O Berman & Z Drezner & D Krass, 2011. "Discrete cooperative covering problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 2002-2012, November.
    17. Tedeschi, Danilo & Andretta, Marina, 2021. "New exact algorithms for planar maximum covering location by ellipses problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 114-127.
    18. Cordeau, Jean-François & Furini, Fabio & Ljubić, Ivana, 2019. "Benders decomposition for very large scale partial set covering and maximal covering location problems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 882-896.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huizhu Wang & Jianqin Zhou & Ling Zhou, 2024. "A Lattice Boltzmann Method-like Algorithm for the Maximal Covering Location Problem on the Complex Network: Application to Location of Railway Emergency-Rescue Spot," Mathematics, MDPI, vol. 12(2), pages 1-20, January.
    2. Dukkanci, Okan & Campbell, James F. & Kara, Bahar Y., 2024. "Facility location decisions for drone delivery: A literature review," European Journal of Operational Research, Elsevier, vol. 316(2), pages 397-418.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Liang & Chen, Sheng-Jie & Chen, Wei-Kun & Dai, Yu-Hong & Quan, Tao & Chen, Juan, 2023. "Efficient presolving methods for solving maximal covering and partial set covering location problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 73-87.
    2. Jing Yao & Alan T. Murray, 2014. "Locational Effectiveness of Clinics Providing Sexual and Reproductive Health Services to Women in Rural Mozambique," International Regional Science Review, , vol. 37(2), pages 172-193, April.
    3. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    4. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    5. Karatas, Mumtaz & Eriskin, Levent, 2021. "The minimal covering location and sizing problem in the presence of gradual cooperative coverage," European Journal of Operational Research, Elsevier, vol. 295(3), pages 838-856.
    6. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    7. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    8. Murray, Alan T., 2021. "Contemporary optimization application through geographic information systems," Omega, Elsevier, vol. 99(C).
    9. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.
    10. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    11. Mark S. Daskin, 2008. "What you should know about location modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 283-294, June.
    12. Liu, Yanchao, 2023. "An elliptical cover problem in drone delivery network design and its solution algorithms," European Journal of Operational Research, Elsevier, vol. 304(3), pages 912-925.
    13. Iloglu, Suzan & Albert, Laura A., 2020. "A maximal multiple coverage and network restoration problem for disaster recovery," Operations Research Perspectives, Elsevier, vol. 7(C).
    14. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    15. Juan Antonio Araiza-Aguilar & Constantino Gutiérrez-Palacios & María Neftalí Rojas-Valencia & Hugo Alejandro Nájera-Aguilar & Rubén Fernando Gutiérrez-Hernández & Rodrigo Antonio Aguilar-Vera, 2019. "Selection of Sites for the Treatment and the Final Disposal of Construction and Demolition Waste, Using Two Approaches: An Analysis for Mexico City," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    16. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    17. Richard L Church & Carlos A Baez, 2020. "Generating optimal and near-optimal solutions to facility location problems," Environment and Planning B, , vol. 47(6), pages 1014-1030, July.
    18. Haywood, Adam B. & Lunday, Brian J. & Robbins, Matthew J. & Pachter, Meir N., 2022. "The weighted intruder path covering problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 347-358.
    19. Eliş, Haluk & Tansel, Barbaros & Oğuz, Osman & Güney, Mesut & Kian, Ramez, 2021. "On guarding real terrains: The terrain guarding and the blocking path problems," Omega, Elsevier, vol. 102(C).
    20. Guerriero, Francesca & Miglionico, Giovanna & Olivito, Filomena, 2016. "Location and reorganization problems: The Calabrian health care system case," European Journal of Operational Research, Elsevier, vol. 250(3), pages 939-954.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:307:y:2023:i:3:p:1040-1054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.