IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v14y2006i3p229-246.html
   My bibliography  Save this article

An ant colony algorithm for the pos/neg weighted p-median problem

Author

Listed:
  • Jafar Fathali
  • Hossein Kakhki
  • Rainer Burkard

Abstract

Let a graph G = (V, E) with vertex set V and edge set E be given. The classical graph version of the p-median problem asks for a subset $$X\subseteq V$$ of cardinality p, so that the (weighted) sum of the minimum distances from X to all other vertices in V is minimized. We consider the semi-obnoxious case, where every vertex has either a positive or a negative weight. This gives rise to two different objective functions, namely the weighted sum of the minimum distances from X to the vertices in V\X and, differently, the sum over the minimum weighted distances from X to V\X. In this paper an Ant Colony algorithm with a tabu restriction is designed for both problems. Computational results show its superiority with respect to a previously investigated variable neighborhood search and a tabu search heuristic. Copyright Physica-Verlag 2006

Suggested Citation

  • Jafar Fathali & Hossein Kakhki & Rainer Burkard, 2006. "An ant colony algorithm for the pos/neg weighted p-median problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(3), pages 229-246, September.
  • Handle: RePEc:spr:cejnor:v:14:y:2006:i:3:p:229-246
    DOI: 10.1007/s10100-006-0001-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-006-0001-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-006-0001-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfred A. Kuehn & Michael J. Hamburger, 1963. "A Heuristic Program for Locating Warehouses," Management Science, INFORMS, vol. 9(4), pages 643-666, July.
    2. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    3. Michael B. Teitz & Polly Bart, 1968. "Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph," Operations Research, INFORMS, vol. 16(5), pages 955-961, October.
    4. Osman Alp & Erhan Erkut & Zvi Drezner, 2003. "An Efficient Genetic Algorithm for the p-Median Problem," Annals of Operations Research, Springer, vol. 122(1), pages 21-42, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. Jayalakshmi & Alok Singh, 2017. "A hybrid artificial bee colony algorithm for the p-median problem with positive/negative weights," OPSEARCH, Springer;Operational Research Society of India, vol. 54(1), pages 67-93, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mladenovic, Nenad & Brimberg, Jack & Hansen, Pierre & Moreno-Perez, Jose A., 2007. "The p-median problem: A survey of metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 179(3), pages 927-939, June.
    2. Pierre Hansen & Jack Brimberg & Dragan Urošević & Nenad Mladenović, 2007. "Primal-Dual Variable Neighborhood Search for the Simple Plant-Location Problem," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 552-564, November.
    3. J Brimberg & P Hansen & G Laporte & N Mladenović & D Urošević, 2008. "The maximum return-on-investment plant location problem with market share," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 399-406, March.
    4. Alcaraz, Javier & Landete, Mercedes & Monge, Juan F., 2012. "Design and analysis of hybrid metaheuristics for the Reliability p-Median Problem," European Journal of Operational Research, Elsevier, vol. 222(1), pages 54-64.
    5. Michael Brusco & Hans-Friedrich Köhn, 2009. "Exemplar-Based Clustering via Simulated Annealing," Psychometrika, Springer;The Psychometric Society, vol. 74(3), pages 457-475, September.
    6. B. Jayalakshmi & Alok Singh, 2017. "A hybrid artificial bee colony algorithm for the p-median problem with positive/negative weights," OPSEARCH, Springer;Operational Research Society of India, vol. 54(1), pages 67-93, March.
    7. Wangshu Mu & Daoqin Tong, 2020. "On solving large p-median problems," Environment and Planning B, , vol. 47(6), pages 981-996, July.
    8. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    9. Antunes, Antonio & Peeters, Dominique, 2001. "On solving complex multi-period location models using simulated annealing," European Journal of Operational Research, Elsevier, vol. 130(1), pages 190-201, April.
    10. Mauricio Resende & Renato Werneck, 2007. "A fast swap-based local search procedure for location problems," Annals of Operations Research, Springer, vol. 150(1), pages 205-230, March.
    11. Comber, Alexis & Dickie, Jennifer & Jarvis, Claire & Phillips, Martin & Tansey, Kevin, 2015. "Locating bioenergy facilities using a modified GIS-based location–allocation-algorithm: Considering the spatial distribution of resource supply," Applied Energy, Elsevier, vol. 154(C), pages 309-316.
    12. Snežana Tadić & Mladen Krstić & Željko Stević & Miloš Veljović, 2023. "Locating Collection and Delivery Points Using the p -Median Location Problem," Logistics, MDPI, vol. 7(1), pages 1-17, February.
    13. Onur Seref & Ya-Ju Fan & Wanpracha Art Chaovalitwongse, 2014. "Mathematical Programming Formulations and Algorithms for Discrete k-Median Clustering of Time-Series Data," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 160-172, February.
    14. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    15. Miroslav Marić & Zorica Stanimirović & Srdjan Božović, 2015. "Hybrid metaheuristic method for determining locations for long-term health care facilities," Annals of Operations Research, Springer, vol. 227(1), pages 3-23, April.
    16. Sridharan, R., 1995. "The capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 87(2), pages 203-213, December.
    17. Santos, Miguel Gueifão & Antunes, António Pais, 2015. "Long-term evolution of airport networks: Optimization model and its application to the United States," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 17-46.
    18. Lim, Seow & Kuby, Michael, 2010. "Heuristic algorithms for siting alternative-fuel stations using the Flow-Refueling Location Model," European Journal of Operational Research, Elsevier, vol. 204(1), pages 51-61, July.
    19. ReVelle, C.S. & Eiselt, H.A. & Daskin, M.S., 2008. "A bibliography for some fundamental problem categories in discrete location science," European Journal of Operational Research, Elsevier, vol. 184(3), pages 817-848, February.
    20. John Hodgson, M. & Rosing, K. E. & Leontien, A. & Storrier, G., 1996. "Applying the flow-capturing location-allocation model to an authentic network: Edmonton, Canada," European Journal of Operational Research, Elsevier, vol. 90(3), pages 427-443, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:14:y:2006:i:3:p:229-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.