IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v67y2017icp31-41.html
   My bibliography  Save this article

Combined emergency preparedness and operations for safe personnel transport to offshore locations

Author

Listed:
  • Brachner, Markus
  • Hvattum, Lars Magnus

Abstract

Long distances, sparse infrastructure, and adverse environmental conditions make the offshore emergency preparedness system in the High North a big and yet unsolved challenge. This applies in particular to the personnel transport between onshore bases and offshore facilities, which is usually conducted by helicopters. One of the issues to be solved is the sufficient coverage with emergency response units (RUs) in this sparse infrastructure environment. This paper proposes an answer to this issue by using sound logistical concepts, which involves connecting operations and preparedness. A mathematical model is introduced that combines a routing and a covering problem. On one hand, the shortest possible helicopter routes to offshore locations are sought, subject to being within the area covered by the deployed RUs. On the other hand, those RUs are placed so that a contingent helicopter ditching at any point on the chosen routes can be handled within given time limits. The combination of routing and covering forms a trade-off, which gives the decision maker the freedom to balance between the minimization of operational costs related to transport route distances and the long-term costs from response capacity requirements. A computational method that reduces the time to find a solution and allows decision makers to solve real life instances is presented. Computational experiments are conducted with the proposed model, based on prospective production sites in the Barents Sea.

Suggested Citation

  • Brachner, Markus & Hvattum, Lars Magnus, 2017. "Combined emergency preparedness and operations for safe personnel transport to offshore locations," Omega, Elsevier, vol. 67(C), pages 31-41.
  • Handle: RePEc:eee:jomega:v:67:y:2017:i:c:p:31-41
    DOI: 10.1016/j.omega.2016.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048316300202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2016.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akgün, İbrahim & Gümüşbuğa, Ferhat & Tansel, Barbaros, 2015. "Risk based facility location by using fault tree analysis in disaster management," Omega, Elsevier, vol. 52(C), pages 168-179.
    2. O Berman & Z Drezner & D Krass, 2011. "Discrete cooperative covering problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 2002-2012, November.
    3. Fernanda Menezes & Oscar Porto & Marcelo L. Reis & Lorenza Moreno & Marcus Poggi de Aragão & Eduardo Uchoa & Hernán Abeledo & Nelci Carvalho do Nascimento, 2010. "Optimizing Helicopter Transport of Oil Rig Crews at Petrobras," Interfaces, INFORMS, vol. 40(5), pages 408-416, October.
    4. Vinnem, Jan Erik & Aven, Terje & Husebø, Torleif & Seljelid, Jorunn & Tveit, Odd J., 2006. "Major hazard risk indicators for monitoring of trends in the Norwegian offshore petroleum sector," Reliability Engineering and System Safety, Elsevier, vol. 91(7), pages 778-791.
    5. O Berman & Z Drezner & D Krass, 2011. "Discrete cooperative covering problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 2002-2012, November.
    6. Rennemo, Sigrid Johansen & Rø, Kristina Fougner & Hvattum, Lars Magnus & Tirado, Gregorio, 2014. "A three-stage stochastic facility routing model for disaster response planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 116-135.
    7. Qian, Fubin & Gribkovskaia, Irina & Laporte, Gilbert & Halskau sr., Øyvind, 2012. "Passenger and pilot risk minimization in offshore helicopter transportation," Omega, Elsevier, vol. 40(5), pages 584-593.
    8. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    9. Verma, Manish & Gendreau, Michel & Laporte, Gilbert, 2013. "Optimal location and capability of oil-spill response facilities for the south coast of Newfoundland," Omega, Elsevier, vol. 41(5), pages 856-867.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.
    2. Qian, Fubin & Strusevich, Vitaly & Gribkovskaia, Irina & Halskau, Øyvind, 2015. "Minimization of passenger takeoff and landing risk in offshore helicopter transportation: Models, approaches and analysis," Omega, Elsevier, vol. 51(C), pages 93-106.
    3. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    4. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    5. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    6. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    7. Gribkovskaia, Irina & Halskau, Oyvind & Kovalyov, Mikhail Y., 2015. "Minimizing takeoff and landing risk in helicopter pickup and delivery operations," Omega, Elsevier, vol. 55(C), pages 73-80.
    8. Blanco, Víctor & Gázquez, Ricardo & Saldanha-da-Gama, Francisco, 2023. "Multi-type maximal covering location problems: Hybridizing discrete and continuous problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1040-1054.
    9. Vieira, Thiago & De La Vega, Jonathan & Tavares, Roberto & Munari, Pedro & Morabito, Reinaldo & Bastos, Yan & Ribas, Paulo César, 2021. "Exact and heuristic approaches to reschedule helicopter flights for personnel transportation in the oil industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    10. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    11. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    12. Xianjun Guan & Fei Bi & Min Liu & Huayou Chen & Ligang Zhou, 2018. "Study on location allocation of earthquake emergency service depot based on hybrid multi-attribute decision making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 337-348, January.
    13. Bashiri, Mahdi & Chehrepak, Elaheh & Gomari, Saeed, 2014. "Gradual Covering Location Problem with Stochastic Radius," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Innovative Methods in Logistics and Supply Chain Management: Current Issues and Emerging Practices. Proceedings of the Hamburg International Conferenc, volume 19, pages 165-186, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    14. Qian, Fubin & Gribkovskaia, Irina & Laporte, Gilbert & Halskau sr., Øyvind, 2012. "Passenger and pilot risk minimization in offshore helicopter transportation," Omega, Elsevier, vol. 40(5), pages 584-593.
    15. Karatas, Mumtaz & Eriskin, Levent, 2021. "The minimal covering location and sizing problem in the presence of gradual cooperative coverage," European Journal of Operational Research, Elsevier, vol. 295(3), pages 838-856.
    16. Aghajani, Mojtaba & Torabi, S. Ali & Heydari, Jafar, 2020. "A novel option contract integrated with supplier selection and inventory prepositioning for humanitarian relief supply chains," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    17. Emilio Carrizosa, 2015. "Comments on: Static and dynamic source locations in undirected networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 647-649, October.
    18. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    19. Zhang, Ying & Qi, Mingyao & Miao, Lixin & Liu, Erchao, 2014. "Hybrid metaheuristic solutions to inventory location routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 305-323.
    20. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:67:y:2017:i:c:p:31-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.