IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v114y1999i3p528-541.html
   My bibliography  Save this article

An exact algorithm for large multiple knapsack problems

Author

Listed:
  • Pisinger, David

Abstract

No abstract is available for this item.

Suggested Citation

  • Pisinger, David, 1999. "An exact algorithm for large multiple knapsack problems," European Journal of Operational Research, Elsevier, vol. 114(3), pages 528-541, May.
  • Handle: RePEc:eee:ejores:v:114:y:1999:i:3:p:528-541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(98)00120-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon, Jay & Apte, Aruna & Regnier, Eva, 2017. "An application of the multiple knapsack problem: The self-sufficient marine," European Journal of Operational Research, Elsevier, vol. 256(3), pages 868-876.
    2. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    3. Alex Fukunaga, 2011. "A branch-and-bound algorithm for hard multiple knapsack problems," Annals of Operations Research, Springer, vol. 184(1), pages 97-119, April.
    4. Tomohiko Mizutani & Makoto Yamashita, 2013. "Correlative sparsity structures and semidefinite relaxations for concave cost transportation problems with change of variables," Journal of Global Optimization, Springer, vol. 56(3), pages 1073-1100, July.
    5. Zheng Wang & Wei Xu & Xiangpei Hu & Yong Wang, 2022. "Inventory allocation to robotic mobile-rack and picker-to-part warehouses at minimum order-splitting and replenishment costs," Annals of Operations Research, Springer, vol. 316(1), pages 467-491, September.
    6. Kataoka, Seiji & Yamada, Takeo, 2014. "Upper and lower bounding procedures for the multiple knapsack assignment problem," European Journal of Operational Research, Elsevier, vol. 237(2), pages 440-447.
    7. Peng Wu & Junheng Cheng & Feng Chu, 2021. "Large-scale energy-conscious bi-objective single-machine batch scheduling under time-of-use electricity tariffs via effective iterative heuristics," Annals of Operations Research, Springer, vol. 296(1), pages 471-494, January.
    8. Ang, James S.K. & Cao, Chengxuan & Ye, Heng-Qing, 2007. "Model and algorithms for multi-period sea cargo mix problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1381-1393, August.
    9. Kubat, Peter & Smith, J. MacGregor, 2001. "A multi-period network design problem for cellular telecommunication systems," European Journal of Operational Research, Elsevier, vol. 134(2), pages 439-456, October.
    10. Zhen, Lu & Wang, Kai & Wang, Shuaian & Qu, Xiaobo, 2018. "Tug scheduling for hinterland barge transport: A branch-and-price approach," European Journal of Operational Research, Elsevier, vol. 265(1), pages 119-132.
    11. Martello, Silvano & Monaci, Michele, 2020. "Algorithmic approaches to the multiple knapsack assignment problem," Omega, Elsevier, vol. 90(C).
    12. Olivier Lalonde & Jean-François Côté & Bernard Gendron, 2022. "A Branch-and-Price Algorithm for the Multiple Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3134-3150, November.
    13. Hajkowicz, Stefan & Higgins, Andrew J. & Williams, Kristen & Faith, Daniel P. & Burton, Michael P., 2007. "Optimisation and the selection of conservation contracts," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(1), pages 1-18.
    14. Mhand Hifi & Hedi Mhalla & Slim Sadfi, 2005. "Sensitivity of the Optimum to Perturbations of the Profit or Weight of an Item in the Binary Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 10(3), pages 239-260, November.
    15. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    16. Soma, Nei Yoshihiro & Toth, Paolo, 2002. "An exact algorithm for the subset sum problem," European Journal of Operational Research, Elsevier, vol. 136(1), pages 57-66, January.
    17. Zhenbo Wang & Wenxun Xing, 2009. "A successive approximation algorithm for the multiple knapsack problem," Journal of Combinatorial Optimization, Springer, vol. 17(4), pages 347-366, May.
    18. Yang, Zhen & Chen, Haoxun & Chu, Feng & Wang, Nengmin, 2019. "An effective hybrid approach to the two-stage capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 275(2), pages 467-480.
    19. David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
    20. Geir Dahl & Njål Foldnes, 2006. "LP based heuristics for the multiple knapsack problem with assignment restrictions," Annals of Operations Research, Springer, vol. 146(1), pages 91-104, September.
    21. Yamada, Takeo & Takeoka, Takahiro, 2009. "An exact algorithm for the fixed-charge multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 700-705, January.
    22. Mancini, Simona & Ciavotta, Michele & Meloni, Carlo, 2021. "The Multiple Multidimensional Knapsack with Family-Split Penalties," European Journal of Operational Research, Elsevier, vol. 289(3), pages 987-998.
    23. M Hifi & M Michrafy & A Sbihi, 2004. "Heuristic algorithms for the multiple-choice multidimensional knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1323-1332, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas L. Magnanti, 2021. "Optimization: From Its Inception," Management Science, INFORMS, vol. 67(9), pages 5349-5363, September.
    2. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    3. Iida, Hiroshi, 2011. "How to solve the collapsing subset-sum problem revisited," ビジネス創造センターディスカッション・ペーパー (Discussion papers of the Center for Business Creation) 10252/4432, Otaru University of Commerce.
    4. Vairaktarakis, George L., 2000. "Robust multi-item newsboy models with a budget constraint," International Journal of Production Economics, Elsevier, vol. 66(3), pages 213-226, July.
    5. Glover, Fred, 2013. "Advanced greedy algorithms and surrogate constraint methods for linear and quadratic knapsack and covering problems," European Journal of Operational Research, Elsevier, vol. 230(2), pages 212-225.
    6. Marc Goerigk, 2014. "A note on upper bounds to the robust knapsack problem with discrete scenarios," Annals of Operations Research, Springer, vol. 223(1), pages 461-469, December.
    7. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    8. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2022. "A new class of hard problem instances for the 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 841-854.
    9. M Hifi & M Michrafy & A Sbihi, 2004. "Heuristic algorithms for the multiple-choice multidimensional knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1323-1332, December.
    10. Herweg, Fabian & Müller, Daniel, 2008. "The Optimality of Simple Contracts: Moral Hazard and Loss Aversion," Bonn Econ Discussion Papers 17/2008, University of Bonn, Bonn Graduate School of Economics (BGSE).
    11. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    12. B. Golany & N. Goldberg & U. Rothblum, 2015. "Allocating multiple defensive resources in a zero-sum game setting," Annals of Operations Research, Springer, vol. 225(1), pages 91-109, February.
    13. Teresa Estañ & Natividad Llorca & Ricardo Martínez & Joaquín Sánchez-Soriano, 2020. "On the difficulty of budget allocation in claims problems with indivisible items of different prices," ThE Papers 20/09, Department of Economic Theory and Economic History of the University of Granada..
    14. Zhang, Cai Wen & Ong, Hoon Liong, 2004. "Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic," European Journal of Operational Research, Elsevier, vol. 159(3), pages 545-557, December.
    15. Teresa Estañ & Natividad Llorca & Ricardo Martínez & Joaquín Sánchez-Soriano, 2021. "On the Difficulty of Budget Allocation in Claims Problems with Indivisible Items and Prices," Group Decision and Negotiation, Springer, vol. 30(5), pages 1133-1159, October.
    16. Shabtay, Dvir, 2022. "Single-machine scheduling with machine unavailability periods and resource dependent processing times," European Journal of Operational Research, Elsevier, vol. 296(2), pages 423-439.
    17. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2023. "Features for the 0-1 knapsack problem based on inclusionwise maximal solutions," European Journal of Operational Research, Elsevier, vol. 311(1), pages 36-55.
    18. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    19. Wim Linden & Ellen Boekkooi-Timminga, 1989. "A maximin model for IRT-based test design with practical constraints," Psychometrika, Springer;The Psychometric Society, vol. 54(2), pages 237-247, June.
    20. Christoph Buchheim & Dorothee Henke & Jannik Irmai, 2022. "The Stochastic Bilevel Continuous Knapsack Problem with Uncertain Follower’s Objective," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 521-542, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:114:y:1999:i:3:p:528-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.