IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v18y2023ip714-726..html
   My bibliography  Save this article

Commercial building integrated energy system: sizing and energy-economic assessment

Author

Listed:
  • Sadegh Nikbakht Naserabad
  • Moslem Akbari Vakilabadi
  • Mohammad Hossein Ahmadi

Abstract

Integrated energy systems are one of the potential options for buildings that can reduce emission. In this research study, the energetic and economic performance of a micro-gas turbine combined heating and cooling plant coupled with a solar PV is analyzed for an office building in Iran. For each analysis, two different scenarios have been performed. System sizing parameters defined in a way that renewable to fossil fuel share is correlated to plant performance and economy. To model the studied system, a time-dependent method is used, which is the inherent characteristic of renewable energies. The renewable energies used here are solar heaters and solar panels. Contours of Net Present Value (NPV) are evaluated as a function of solar heating share and different economic parameters. In addition, optimal system sizing for a typical building is obtained and the results are provided. Effect of various major parameters shows that under the current condition and despite the supportive incentive for renewable energies, strategies and plans even without solar energy are not economically viable due to the high discount rates. In addition, results provide that, in reasonable and normal discount rate, fuel and grid electricity prices, governmental subsidization for conventional combined heat, and power (CHP) andcombined cooling, heat, and power(CCHP) is not necessary, and only in this condition solar electricity selling price (i.e. governmental support program) is effective to increase renewable penetration. The results show that if the interest rate is less than 5%, the NPV becomes positive. Also, when the electricity price reaches $0.07/kWh or higher, the NPV becomes positive.

Suggested Citation

  • Sadegh Nikbakht Naserabad & Moslem Akbari Vakilabadi & Mohammad Hossein Ahmadi, 2023. "Commercial building integrated energy system: sizing and energy-economic assessment," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 714-726.
  • Handle: RePEc:oup:ijlctc:v:18:y:2023:i::p:714-726.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctad050
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valero, Antonio & Lozano, Miguel A. & Serra, Luis & Tsatsaronis, George & Pisa, Javier & Frangopoulos, Christos & von Spakovsky, Michael R., 1994. "CGAM problem: Definition and conventional solution," Energy, Elsevier, vol. 19(3), pages 279-286.
    2. Arcuri, P. & Florio, G. & Fragiacomo, P., 2007. "A mixed integer programming model for optimal design of trigeneration in a hospital complex," Energy, Elsevier, vol. 32(8), pages 1430-1447.
    3. Soteris A. Kalogirou, 2015. "Building integration of solar renewable energy systems towards zero or nearly zero energy buildings," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 10(4), pages 379-385.
    4. Tichi, S.G. & Ardehali, M.M. & Nazari, M.E., 2010. "Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm," Energy Policy, Elsevier, vol. 38(10), pages 6240-6250, October.
    5. Rios, Mario & Kaltschmitt, Martin, 2016. "Electricity generation potential from biogas produced from organic waste in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 384-395.
    6. Jie Ji & Zhi Yu & Wei Sun & Wu Wang, 2014. "Approach of a solar building integrated with multiple novel solar technologies," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(2), pages 109-117.
    7. Azhar Ghazali & Elias Salleh & Lim Chin Haw & Sohif Mat & Kamaruzzaman Sopian, 2017. "Feasibility of a vertical photovoltaic system on a high-rise building in Malaysia: economic evaluation," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(4), pages 349-357.
    8. Azhar Ghazali & Elias Ilias Salleh & Lim Chin Haw & Sohif Mat & Kamaruzzaman Sopian, 2017. "Feasibility of vertical photovoltaic system on high-rise building in Malaysia: performance evaluation," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(3), pages 263-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Ziwei & Yao, Zhen, 2024. "A novel approach to predict buildings load based on deep learning and non-intrusive load monitoring technique, toward smart building," Energy, Elsevier, vol. 312(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    2. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    3. Gopinath Subramani & Vigna K. Ramachandaramurthy & P. Sanjeevikumar & Jens Bo Holm-Nielsen & Frede Blaabjerg & Leonowicz Zbigniew & Pawel Kostyla, 2019. "Techno-Economic Optimization of Grid-Connected Photovoltaic (PV) and Battery Systems Based on Maximum Demand Reduction (MDRed) Modelling in Malaysia," Energies, MDPI, vol. 12(18), pages 1-21, September.
    4. Jayasekara, Saliya & Halgamuge, Saman K. & Attalage, Rahula A. & Rajarathne, Rohitha, 2014. "Optimum sizing and tracking of combined cooling heating and power systems for bulk energy consumers," Applied Energy, Elsevier, vol. 118(C), pages 124-134.
    5. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    6. Lai, Sau Man & Hui, Chi Wai, 2009. "Feasibility and flexibility for a trigeneration system," Energy, Elsevier, vol. 34(10), pages 1693-1704.
    7. Cheng, Yaohua & Zhang, Ning & Kirschen, Daniel S. & Huang, Wujing & Kang, Chongqing, 2020. "Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China," Applied Energy, Elsevier, vol. 261(C).
    8. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    9. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    10. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    11. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    12. Usón, Sergio & Kostowski, Wojciech J. & Stanek, Wojciech & Gazda, Wiesław, 2015. "Thermoecological cost of electricity, heat and cold generated in a trigeneration module fuelled with selected fossil and renewable fuels," Energy, Elsevier, vol. 92(P3), pages 308-319.
    13. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    14. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    15. Torres, César & Valero, Antonio & Valero, Alicia, 2013. "Exergoecology as a tool for ecological modelling. The case of the US food production chain," Ecological Modelling, Elsevier, vol. 255(C), pages 21-28.
    16. Shaaban, M. & Azit, A.H. & Nor, K.M., 2011. "Grid integration policies of gas-fired cogeneration in Peninsular Malaysia: Fallacies and counterexamples," Energy Policy, Elsevier, vol. 39(9), pages 5063-5075, September.
    17. Fazlollahi, Samira & Mandel, Pierre & Becker, Gwenaelle & Maréchal, Francois, 2012. "Methods for multi-objective investment and operating optimization of complex energy systems," Energy, Elsevier, vol. 45(1), pages 12-22.
    18. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    19. Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
    20. repec:grz:wpaper:2016-10 is not listed on IDEAS
    21. Mazur, V., 2009. "Fuzzy thermoeconomic optimization of energy-transforming systems," Applied Energy, Elsevier, vol. 84(7-8), pages 749-762, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:18:y:2023:i::p:714-726.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.