IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v9y2014i2p109-117..html
   My bibliography  Save this article

Approach of a solar building integrated with multiple novel solar technologies

Author

Listed:
  • Jie Ji
  • Zhi Yu
  • Wei Sun
  • Wu Wang

Abstract

A novel solar building is constructed in Hefei, China. The solar energy can supply the building with solar power, solar space heating, solar-cooling and solar-hot water by corresponding novel solar technologies and components. Preliminary simulation by TRNSYS showed that the solar building could reduce >30% of the energy consumption compared with the same scale of the office building in Hefei during the heating season. In an experiment performed on 20 February 2013, the max temperatures of both the north room and south room reached 21°C and the average temperatures were 17°C, only using the solar air heating system.

Suggested Citation

  • Jie Ji & Zhi Yu & Wei Sun & Wu Wang, 2014. "Approach of a solar building integrated with multiple novel solar technologies," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(2), pages 109-117.
  • Handle: RePEc:oup:ijlctc:v:9:y:2014:i:2:p:109-117.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctu011
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadegh Nikbakht Naserabad & Moslem Akbari Vakilabadi & Mohammad Hossein Ahmadi, 2023. "Commercial building integrated energy system: sizing and energy-economic assessment," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 714-726.
    2. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 178-191.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:9:y:2014:i:2:p:109-117.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.