IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v17y2022ip1104-1123..html
   My bibliography  Save this article

Hybrid nanofluids flow and heat transfer in cavities: a technological review
[Nanofluid flow and heat transfer in porous media: a review of the latest developments]

Author

Listed:
  • Temiloluwa O Scott
  • Daniel R E Ewim
  • Andrew C Eloka-Eboka

Abstract

The urgent and indispensable need to develop new methods of enhancing heat transfer efficiency to improve energy devices’ performance cannot be overlooked in this era of green energy and sustainable technologies. Nanofluids research has proliferated in the past decade, and reports indicate that nanofluids can be used for heat transfer applications in engineering and in general and/or commercial industries. Nanofluid is the dispersion of nanoparticles with high thermal conductivity in common working fluids. Nevertheless, a growing area of research in recent years has involved using two or more nanoparticles in a base fluid, known as hybrid nanofluids. Studies show that hybrid nanofluids exhibited better thermal and rheological characteristics than mono nanofluids. In addition, many researchers have reported on the thermal-fluid behaviors of nanofluids in comparison with hybrid nanofluids on natural convection in cavity flows. This review discusses hybrid nanofluids preparation, stability analysis and characterization, thermal properties and heat transfer characteristics in cavities. Furthermore, hybrid nanofluids demonstrated better heat transfer characteristics than mono nanofluids or conventional fluids even if more research is needed in terms of hybrid nanofluids preparation, stability, characterization and applications.

Suggested Citation

  • Temiloluwa O Scott & Daniel R E Ewim & Andrew C Eloka-Eboka, 2022. "Hybrid nanofluids flow and heat transfer in cavities: a technological review [Nanofluid flow and heat transfer in porous media: a review of the latest developments]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1104-1123.
  • Handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:1104-1123.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctac093
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sundar, L. Syam & Sharma, K.V. & Singh, Manoj K. & Sousa, A.C.M., 2017. "Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 185-198.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandra Corasaniti & Michele Potenza & Ivano Petracci, 2023. "Preliminary Results of Heat Transfer and Pressure Drop Measurements on Al 2 O 3 /H 2 O Nanofluids through a Lattice Channel," Energies, MDPI, vol. 16(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Z. Saghir & M. M. Rahman, 2020. "Forced Convection of Al 2 O 3 –Cu, TiO 2 –SiO 2 , FWCNT–Fe 3 O 4 , and ND–Fe 3 O 4 Hybrid Nanofluid in Porous Media," Energies, MDPI, vol. 13(11), pages 1-19, June.
    2. Samah Hamze & David Cabaleiro & Dominique Bégin & Alexandre Desforges & Thierry Maré & Brigitte Vigolo & Luis Lugo & Patrice Estellé, 2020. "Volumetric Properties and Surface Tension of Few-Layer Graphene Nanofluids Based on a Commercial Heat Transfer Fluid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    3. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    4. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Atul Bhattad & Vinay Atgur & Boggarapu Nageswar Rao & N. R. Banapurmath & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & A. M. Sajjan & R. Prasanna Shankara & N. H. Ayachit, 2023. "Review on Mono and Hybrid Nanofluids: Preparation, Properties, Investigation, and Applications in IC Engines and Heat Transfer," Energies, MDPI, vol. 16(7), pages 1-40, March.
    6. Jacek Fal & Omid Mahian & Gaweł Żyła, 2018. "Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review," Energies, MDPI, vol. 11(11), pages 1-46, October.
    7. Che Sidik, Nor Azwadi & Mahmud Jamil, Muhammad & Aziz Japar, Wan Mohd Arif & Muhammad Adamu, Isa, 2017. "A review on preparation methods, stability and applications of hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1112-1122.
    8. Alin Dragomir & Maricel Adam & Mihai Andrusca & Gheorghe Grigoras & Marian Dragomir & Seeram Ramakrishna, 2021. "Modeling, Simulation and Monitoring of Electrical Contacts Temperature in Railway Electric Traction," Mathematics, MDPI, vol. 9(24), pages 1-30, December.
    9. Shahirah Abu Bakar & Norihan Md Arifin & Najiyah Safwa Khashi’ie & Norfifah Bachok, 2021. "Hybrid Nanofluid Flow over a Permeable Shrinking Sheet Embedded in a Porous Medium with Radiation and Slip Impacts," Mathematics, MDPI, vol. 9(8), pages 1-14, April.
    10. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Alireza Esmaeilzadeh & Mahyar Silakhori & Nik Nazri Nik Ghazali & Hendrik Simon Cornelis Metselaar & Azuddin Bin Mamat & Mohammad Sajad Naghavi Sanjani & Soudeh Iranmanesh, 2020. "Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe," Energies, MDPI, vol. 13(24), pages 1-21, December.
    12. Chen, Jingtan & Ahmad, Shakeel & Cai, Junjie & Liu, Huaqiang & Lau, Kwun Ting & Zhao, Jiyun, 2021. "Latest progress on nanotechnology aided boiling heat transfer enhancement: A review," Energy, Elsevier, vol. 215(PA).
    13. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
    14. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    15. Emad H. Aly & Alin V. Roşca & Natalia C. Roşca & Ioan Pop, 2021. "Convective Heat Transfer of a Hybrid Nanofluid over a Nonlinearly Stretching Surface with Radiation Effect," Mathematics, MDPI, vol. 9(18), pages 1-11, September.
    16. Nur Syahirah Wahid & Norihan Md Arifin & Najiyah Safwa Khashi’ie & Ioan Pop, 2020. "Hybrid Nanofluid Slip Flow over an Exponentially Stretching/Shrinking Permeable Sheet with Heat Generation," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    17. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Squeezed Hybrid Nanofluid Flow Over a Permeable Sensor Surface," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    18. Zhao, Xingxing & Ding, Yudong & Ma, Lijiao & Zhu, Xun & Wang, Hong & Cheng, Min & Liao, Qiang, 2023. "An amine-functionalized strategy to enhance the CO2 absorption of type III porous liquids," Energy, Elsevier, vol. 279(C).
    19. Pinar Eneren & Yunus Tansu Aksoy & Maria Rosaria Vetrano, 2022. "Experiments on Single-Phase Nanofluid Heat Transfer Mechanisms in Microchannel Heat Sinks: A Review," Energies, MDPI, vol. 15(7), pages 1-21, March.
    20. Vahidinia, F. & Khorasanizadeh, H. & Aghaei, A., 2023. "Energy, exergy, economic and environmental evaluations of a finned absorber tube parabolic trough collector utilizing hybrid and mono nanofluids and comparison," Renewable Energy, Elsevier, vol. 205(C), pages 185-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:1104-1123.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.