IDEAS home Printed from https://ideas.repec.org/a/wly/emjrnl/v17y2014i2ps39-s58.html
   My bibliography  Save this article

Confidence sets based on inverting Anderson–Rubin tests

Author

Listed:
  • Russell Davidson
  • James G. MacKinnon

Abstract

Economists are often interested in the coefficient of a single endogenous explanatory variable in a linear simultaneous‐equations model. One way to obtain a confidence set for this coefficient is to invert the Anderson–Rubin (AR) test. The AR confidence sets that result have correct coverage under classical assumptions. However, AR confidence sets also have many undesirable properties. It is well known that they can be unbounded when the instruments are weak, as is true of any test with correct coverage. However, even when they are bounded, their length may be very misleading, and their coverage conditional on quantities that the investigator can observe (notably, the Sargan statistic for overidentifying restrictions) can be far from correct. A similar property manifests itself, for similar reasons, when a confidence set for a single parameter is based on inverting an F‐test for two or more parameters.

Suggested Citation

  • Russell Davidson & James G. MacKinnon, 2014. "Confidence sets based on inverting Anderson–Rubin tests," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 39-58, June.
  • Handle: RePEc:wly:emjrnl:v:17:y:2014:i:2:p:s39-s58
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/ectj.12015
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Forchini, Giovanni & Hillier, Grant, 2003. "Conditional Inference For Possibly Unidentified Structural Equations," Econometric Theory, Cambridge University Press, vol. 19(5), pages 707-743, October.
    2. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    3. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    4. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413, October.
    5. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    6. Russell Davidson & James G. MacKinnon, 2008. "Bootstrap inference in a linear equation estimated by instrumental variables," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 443-477, November.
    7. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    8. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    9. David C. Wyld, 2010. "ASecond Lifefor organizations?: managing in the new, virtual world," Management Research Review, Emerald Group Publishing Limited, vol. 33(6), pages 529-562, May.
    10. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    11. Davidson, Russell & MacKinnon, James G., 2010. "Wild Bootstrap Tests for IV Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 128-144.
    12. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    13. Phillips, P.C.B., 1983. "Exact small sample theory in the simultaneous equations model," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 8, pages 449-516, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalaf, Lynda & Lin, Zhenjiang, 2021. "Projection-based inference with particle swarm optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    2. Jeremy Edwards & Sheilagh Ogilvie, 2022. "The Black Death and the origin of the European marriage pattern," Oxford Economic and Social History Working Papers _204, University of Oxford, Department of Economics.
    3. Sheng Wang & Hyunseung Kang, 2022. "Weak‐instrument robust tests in two‐sample summary‐data Mendelian randomization," Biometrics, The International Biometric Society, vol. 78(4), pages 1699-1713, December.
    4. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    5. Martin Emil Jakobsen & Jonas Peters, 2022. "Distributional robustness of K-class estimators and the PULSE [The colonial origins of comparative development: An empirical investigation]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 404-432.
    6. Nakashima, Kiyotaka & Takahashi, Koji, 2018. "The real effects of bank-driven termination of relationships: Evidence from loan-level matched data," Journal of Financial Stability, Elsevier, vol. 39(C), pages 46-65.
    7. Masakure, Oliver, 2016. "The effect of employee loyalty on wages," Journal of Economic Psychology, Elsevier, vol. 56(C), pages 274-298.
    8. Russell Davidson & James G. MacKinnon, 2014. "Bootstrap Confidence Sets with Weak Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 651-675, August.
    9. Taner Osman & Tom Kemeny, 2022. "Local job multipliers revisited," Journal of Regional Science, Wiley Blackwell, vol. 62(1), pages 150-170, January.
    10. Theodore F. Figinski & Alicia Lloro & Avinash Moorthy, 2022. "Revisiting the Effect of Education on Later Life Health," Finance and Economics Discussion Series 2022-007, Board of Governors of the Federal Reserve System (U.S.).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Russell Davidson & James G. MacKinnon, 2015. "Bootstrap Tests for Overidentification in Linear Regression Models," Econometrics, MDPI, vol. 3(4), pages 1-39, December.
    2. Russell Davidson & James G. MacKinnon, 2014. "Bootstrap Confidence Sets with Weak Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 651-675, August.
    3. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    4. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.
    5. Russell Davidson & James G. MacKinnon, 2008. "Bootstrap inference in a linear equation estimated by instrumental variables," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 443-477, November.
    6. MacKinnon, James G., 2023. "Fast cluster bootstrap methods for linear regression models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 52-71.
    7. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    8. Noud P.A. van Giersbergen, 2011. "Bootstrapping Subset Test Statistics in IV Regression," UvA-Econometrics Working Papers 11-08, Universiteit van Amsterdam, Dept. of Econometrics.
    9. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    10. Tchatoka, Firmin Doko, 2015. "Subset Hypotheses Testing And Instrument Exclusion In The Linear Iv Regression," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1192-1228, December.
    11. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    12. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    13. Marcellino, Massimiliano & Kapetanios, George & Khalaf, Lynda, 2015. "Factor based identification-robust inference in IV regressions," CEPR Discussion Papers 10390, C.E.P.R. Discussion Papers.
    14. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    15. Jean-Thomas Bernard & Ba Chu & Lynda Khalaf & Marcel Voia, 2019. "Non-Standard Confidence Sets for Ratios and Tipping Points with Applications to Dynamic Panel Data," Annals of Economics and Statistics, GENES, issue 134, pages 79-108.
    16. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    17. Firmin Doko Tchatoka & Lauren Slinger & Virginie Masson, 2020. "Revisiting empirical studies on the liquidity effect: An identication-robust approach," School of Economics and Public Policy Working Papers 2020-02, University of Adelaide, School of Economics and Public Policy.
    18. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2010. "Estimation uncertainty in structural inflation models with real wage rigidities," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2554-2561, November.
    19. D.S. Poskitt & C.L. Skeels, 2005. "Small Concentration Asymptotics and Instrumental Variables Inference," Department of Economics - Working Papers Series 948, The University of Melbourne.
    20. Christopher L. Skeels & Frank Windmeijer, 2018. "On the Stock–Yogo Tables," Econometrics, MDPI, vol. 6(4), pages 1-23, November.

    More about this item

    JEL classification:

    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emjrnl:v:17:y:2014:i:2:p:s39-s58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.