IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005186.html
   My bibliography  Save this article

The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics

Author

Listed:
  • Laurence Aitchison
  • Máté Lengyel

Abstract

Probabilistic inference offers a principled framework for understanding both behaviour and cortical computation. However, two basic and ubiquitous properties of cortical responses seem difficult to reconcile with probabilistic inference: neural activity displays prominent oscillations in response to constant input, and large transient changes in response to stimulus onset. Indeed, cortical models of probabilistic inference have typically either concentrated on tuning curve or receptive field properties and remained agnostic as to the underlying circuit dynamics, or had simplistic dynamics that gave neither oscillations nor transients. Here we show that these dynamical behaviours may in fact be understood as hallmarks of the specific representation and algorithm that the cortex employs to perform probabilistic inference. We demonstrate that a particular family of probabilistic inference algorithms, Hamiltonian Monte Carlo (HMC), naturally maps onto the dynamics of excitatory-inhibitory neural networks. Specifically, we constructed a model of an excitatory-inhibitory circuit in primary visual cortex that performed HMC inference, and thus inherently gave rise to oscillations and transients. These oscillations were not mere epiphenomena but served an important functional role: speeding up inference by rapidly spanning a large volume of state space. Inference thus became an order of magnitude more efficient than in a non-oscillatory variant of the model. In addition, the network matched two specific properties of observed neural dynamics that would otherwise be difficult to account for using probabilistic inference. First, the frequency of oscillations as well as the magnitude of transients increased with the contrast of the image stimulus. Second, excitation and inhibition were balanced, and inhibition lagged excitation. These results suggest a new functional role for the separation of cortical populations into excitatory and inhibitory neurons, and for the neural oscillations that emerge in such excitatory-inhibitory networks: enhancing the efficiency of cortical computations.Author Summary: Our brain operates in the face of substantial uncertainty due to ambiguity in the inputs, and inherent unpredictability in the environment. Behavioural and neural evidence indicates that the brain often uses a close approximation of the optimal strategy, probabilistic inference, to interpret sensory inputs and make decisions under uncertainty. However, the circuit dynamics underlying such probabilistic computations are unknown. In particular, two fundamental properties of cortical responses, the presence of oscillations and transients, are difficult to reconcile with probabilistic inference. We show that excitatory-inhibitory neural networks are naturally suited to implement a particular inference algorithm, Hamiltonian Monte Carlo. Our network showed oscillations and transients like those found in the cortex and took advantage of these dynamical motifs to speed up inference by an order of magnitude. These results suggest a new functional role for the separation of cortical populations into excitatory and inhibitory neurons, and for the neural oscillations that emerge in such excitatory-inhibitory networks: enhancing the efficiency of cortical computations.

Suggested Citation

  • Laurence Aitchison & Máté Lengyel, 2016. "The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-24, December.
  • Handle: RePEc:plo:pcbi00:1005186
    DOI: 10.1371/journal.pcbi.1005186
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005186
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005186&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Karklin & Michael S. Lewicki, 2009. "Emergence of complex cell properties by learning to generalize in natural scenes," Nature, Nature, vol. 457(7225), pages 83-86, January.
    2. Pietro Berkes & Richard E Turner & Maneesh Sahani, 2009. "A Structured Model of Video Reproduces Primary Visual Cortical Organisation," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    3. Marc O. Ernst & Martin S. Banks, 2002. "Humans integrate visual and haptic information in a statistically optimal fashion," Nature, Nature, vol. 415(6870), pages 429-433, January.
    4. Ruben Coen-Cagli & Peter Dayan & Odelia Schwartz, 2012. "Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-18, March.
    5. Lars Buesing & Johannes Bill & Bernhard Nessler & Wolfgang Maass, 2011. "Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-22, November.
    6. Xiaoqin Wang & Thomas Lu & Ross K. Snider & Li Liang, 2005. "Sustained firing in auditory cortex evoked by preferred stimuli," Nature, Nature, vol. 435(7040), pages 341-346, May.
    7. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Jingwei Sun & Jian Li & Hang Zhang, 2019. "Human representation of multimodal distributions as clusters of samples," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-29, May.
    3. Jörn-Philipp Lies & Ralf M Häfner & Matthias Bethge, 2014. "Slowness and Sparseness Have Diverging Effects on Complex Cell Learning," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-11, March.
    4. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    5. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    7. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    8. Carrillo, Juan & Brocas, Isabelle, 2007. "Reason, Emotion and Information Processing in the Brain," CEPR Discussion Papers 6535, C.E.P.R. Discussion Papers.
    9. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    10. Guido Marco Cicchini & Giovanni D’Errico & David Charles Burr, 2022. "Crowding results from optimal integration of visual targets with contextual information," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Udo A Ernst & Sunita Mandon & Nadja Schinkel–Bielefeld & Simon D Neitzel & Andreas K Kreiter & Klaus R Pawelzik, 2012. "Optimality of Human Contour Integration," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-17, May.
    12. Philipp Schustek & Rubén Moreno-Bote, 2018. "Instance-based generalization for human judgments about uncertainty," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-27, June.
    13. Bernhard Nessler & Michael Pfeiffer & Lars Buesing & Wolfgang Maass, 2013. "Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-30, April.
    14. Edward J A Turnham & Daniel A Braun & Daniel M Wolpert, 2011. "Inferring Visuomotor Priors for Sensorimotor Learning," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    15. Jordi Grau-Moya & Pedro A Ortega & Daniel A Braun, 2012. "Risk-Sensitivity in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-7, September.
    16. Joseph G Makin & Matthew R Fellows & Philip N Sabes, 2013. "Learning Multisensory Integration and Coordinate Transformation via Density Estimation," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-17, April.
    17. Luigi Acerbi & Daniel M Wolpert & Sethu Vijayakumar, 2012. "Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-19, November.
    18. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    19. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    20. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.