IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v414y2001i6865d10.1038_414716a.html
   My bibliography  Save this article

Travelling waves and spatial hierarchies in measles epidemics

Author

Listed:
  • B. T. Grenfell

    (University of Cambridge)

  • O. N. Bjørnstad

    (University of Cambridge
    501 ASI Building, Penn State University)

  • J. Kappey

    (University of Cambridge)

Abstract

Spatio-temporal travelling waves are striking manifestations of predator–prey and host–parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-stationarity—a complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a dynamical explanation for the waves—spread via infective ‘sparks’ from large ‘core’ cities to smaller ‘satellite’ towns. Thus, the spatial hierarchy of host population structure is a prerequisite for these infection waves.

Suggested Citation

  • B. T. Grenfell & O. N. Bjørnstad & J. Kappey, 2001. "Travelling waves and spatial hierarchies in measles epidemics," Nature, Nature, vol. 414(6865), pages 716-723, December.
  • Handle: RePEc:nat:nature:v:414:y:2001:i:6865:d:10.1038_414716a
    DOI: 10.1038/414716a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/414716a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/414716a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sourya Shrestha & Aaron A King & Pejman Rohani, 2011. "Statistical Inference for Multi-Pathogen Systems," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-14, August.
    2. Yusuf Amuda Tajudeen & Habeebullah Jayeola Oladipo & Iyiola Olatunji Oladunjoye & Mutiat Oluwakemi Mustapha & Sheriff Taye Mustapha & Adam Aberi Abdullahi & Rashidat Onyinoyi Yusuf & Samuel Olushola A, 2022. "Preventing the Next Pandemic through a Planetary Health Approach: A Focus on Key Drivers of Zoonosis," Challenges, MDPI, vol. 13(2), pages 1-14, September.
    3. Mohan, Nishith & Kumari, Nitu, 2021. "Positive steady states of a SI epidemic model with cross diffusion," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    4. Campi, Gaetano & Bianconi, Antonio, 2022. "Periodic recurrent waves of Covid-19 epidemics and vaccination campaign," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Goldwyn, Eli E. & Hastings, Alan, 2008. "When can dispersal synchronize populations?," Theoretical Population Biology, Elsevier, vol. 73(3), pages 395-402.
    6. Wang, Yi & Cao, Jinde & Sun, Gui-Quan & Li, Jing, 2014. "Effect of time delay on pattern dynamics in a spatial epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 137-148.
    7. Yujie Yuan & Yantao Wang & Xiushan Jiang & Chun Sing Lai, 2024. "An Innovative Multi-Objective Rescheduling System for Mitigating Pandemic Spread in Aviation Networks," Clean Technol., MDPI, vol. 6(1), pages 1-16, January.
    8. Chun-Hsiang Chan & Tzai-Hung Wen, 2021. "Revisiting the Effects of High-Speed Railway Transfers in the Early COVID-19 Cross-Province Transmission in Mainland China," IJERPH, MDPI, vol. 18(12), pages 1-17, June.
    9. Wladimir J Alonso & Maia A Rabaa & Ricardo Giglio & Mark A Miller & Cynthia Schuck-Paim, 2015. "Modeling the Impact of Alternative Immunization Strategies: Using Matrices as Memory Lanes," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
    10. Jose Angulo & Hwa-Lung Yu & Andrea Langousis & Alexander Kolovos & Jinfeng Wang & Ana Esther Madrid & George Christakos, 2013. "Spatiotemporal Infectious Disease Modeling: A BME-SIR Approach," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    11. Wan Yang & Liang Wen & Shen-Long Li & Kai Chen & Wen-Yi Zhang & Jeffrey Shaman, 2017. "Geospatial characteristics of measles transmission in China during 2005−2014," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-21, April.
    12. Nicola Bellomo & Richard Bingham & Mark A.J. Chaplain & Giovanni Dosi & Guido Forni & Damian A. Knopoff & John Lowengrub & Reidun Twarock & Maria Enrica Virgillito, 2020. "A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world," LEM Papers Series 2020/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. Ngamsa Tegnitsap, J.V. & Fotsin, H.B., 2022. "Multistability, transient chaos and hyperchaos, synchronization, and chimera states in wireless magnetically coupled VDPCL oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    14. Chryssi Giannitsarou & Stephen Kissler & Flavio Toxvaerd, 2021. "Waning Immunity and the Second Wave: Some Projections for SARS-CoV-2," American Economic Review: Insights, American Economic Association, vol. 3(3), pages 321-338, September.
    15. Dirk Douwes‐Schultz & Alexandra M. Schmidt, 2022. "Zero‐state coupled Markov switching count models for spatio‐temporal infectious disease spread," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 589-612, June.
    16. Frey, Erwin, 2010. "Evolutionary game theory: Theoretical concepts and applications to microbial communities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(20), pages 4265-4298.
    17. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    18. Munro, Alastair D. & Smallman-Raynor, Matthew & Algar, Adam C., 2021. "Long-term changes in endemic threshold populations for pertussis in England and Wales: A spatiotemporal analysis of Lancashire and South Wales, 1940-69," Social Science & Medicine, Elsevier, vol. 288(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:414:y:2001:i:6865:d:10.1038_414716a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.