Spatiotemporal Infectious Disease Modeling: A BME-SIR Approach
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0072168
Download full text from publisher
References listed on IDEAS
- Birgit Schrödle & Leonhard Held & Håvard Rue, 2012. "Assessing the Impact of a Movement Network on the Spatiotemporal Spread of Infectious Diseases," Biometrics, The International Biometric Society, vol. 68(3), pages 736-744, September.
- B. T. Grenfell & O. N. Bjørnstad & J. Kappey, 2001. "Travelling waves and spatial hierarchies in measles epidemics," Nature, Nature, vol. 414(6865), pages 716-723, December.
- Neil M. Ferguson & Matt J. Keeling & W. John Edmunds & Raymond Gani & Bryan T. Grenfell & Roy M. Anderson & Steve Leach, 2003. "Planning for smallpox outbreaks," Nature, Nature, vol. 425(6959), pages 681-685, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mario J. Crucini & Oscar O'Flaherty, 2020.
"Stay-at-Home Orders in a Fiscal Union,"
NBER Working Papers
28182, National Bureau of Economic Research, Inc.
- Mario J. Crucini & Oscar O'Flaherty, 2021. "Stay-at-home orders in a fiscal union," CAMA Working Papers 2021-39, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Junyu He & George Christakos & Jiaping Wu & Piotr Jankowski & Andreas Langousis & Yong Wang & Wenwu Yin & Wenyi Zhang, 2019. "Probabilistic logic analysis of the highly heterogeneous spatiotemporal HFRS incidence distribution in Heilongjiang province (China) during 2005-2013," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 13(1), pages 1-28, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chryssi Giannitsarou & Stephen Kissler & Flavio Toxvaerd, 2021.
"Waning Immunity and the Second Wave: Some Projections for SARS-CoV-2,"
American Economic Review: Insights, American Economic Association, vol. 3(3), pages 321-338, September.
- Giannitsarou, C. & Kissler, S. & Toxvaerd, F., 2020. "Waning Immunity and the Second Wave: Some Projections for SARS-COV-2," Cambridge Working Papers in Economics 20126, Faculty of Economics, University of Cambridge.
- Giannitsarou, Chryssi & Kissler, Stephen & Toxvaerd, Flavio, 2020. "Waning Immunity and the Second Wave: Some Projections for SARS-CoV-2," CEPR Discussion Papers 14852, C.E.P.R. Discussion Papers.
- Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
- Chengcheng Bei & Shiping Liu & Yin Liao & Gaoliang Tian & Zichen Tian, 2021. "Predicting new cases of COVID‐19 and the application to population sustainability analysis," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 4859-4884, September.
- Dunia López-Pintado & Duncan J. Watts, 2008. "Social Influence, Binary Decisions and Collective Dynamics," Rationality and Society, , vol. 20(4), pages 399-443, November.
- Goldwyn, Eli E. & Hastings, Alan, 2008. "When can dispersal synchronize populations?," Theoretical Population Biology, Elsevier, vol. 73(3), pages 395-402.
- Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
- Chun-Hsiang Chan & Tzai-Hung Wen, 2021. "Revisiting the Effects of High-Speed Railway Transfers in the Early COVID-19 Cross-Province Transmission in Mainland China," IJERPH, MDPI, vol. 18(12), pages 1-17, June.
- George Miller & Stephen Randolph & Jan E. Patterson, 2006. "Responding to Bioterrorist Smallpox in San Antonio," Interfaces, INFORMS, vol. 36(6), pages 580-590, December.
- Dirk Douwes‐Schultz & Alexandra M. Schmidt, 2022. "Zero‐state coupled Markov switching count models for spatio‐temporal infectious disease spread," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 589-612, June.
- Nicoletta D’Angelo & Antonino Abbruzzo & Giada Adelfio, 2021. "Spatio-Temporal Spread Pattern of COVID-19 in Italy," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
- Büyüktahtakın, İ. Esra & des-Bordes, Emmanuel & Kıbış, Eyyüb Y., 2018. "A new epidemics–logistics model: Insights into controlling the Ebola virus disease in West Africa," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1046-1063.
- Xiaolei Gao & Jianjian Wei & Hao Lei & Pengcheng Xu & Benjamin J Cowling & Yuguo Li, 2016. "Building Ventilation as an Effective Disease Intervention Strategy in a Dense Indoor Contact Network in an Ideal City," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-20, September.
- Chung‐Min Liao & Yi‐Hsien Cheng & Yi‐Jun Lin & Nan‐Hung Hsieh & Tang‐Luen Huang & Chia‐Pin Chio & Szu‐Chieh Chen & Min‐Pei Ling, 2012. "A Probabilistic Transmission and Population Dynamic Model to Assess Tuberculosis Infection Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1420-1432, August.
- Arazi, R. & Feigel, A., 2021. "Discontinuous transitions of social distancing in the SIR model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
- Daniel Merl & Leah R Johnson & Robert B Gramacy & Marc Mangel, 2009. "A Statistical Framework for the Adaptive Management of Epidemiological Interventions," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-9, June.
- Wijesundera, Isuri & Halgamuge, Malka N. & Nirmalathas, Ampalavanapillai & Nanayakkara, Thrishantha, 2016. "MFPT calculation for random walks in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 986-1002.
- Nicola Bellomo & Richard Bingham & Mark A.J. Chaplain & Giovanni Dosi & Guido Forni & Damian A. Knopoff & John Lowengrub & Reidun Twarock & Maria Enrica Virgillito, 2020. "A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world," LEM Papers Series 2020/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Shams, Bita & Khansari, Mohammad, 2015. "On the impact of epidemic severity on network immunization algorithms," Theoretical Population Biology, Elsevier, vol. 106(C), pages 83-93.
- Badham, Jennifer & Stocker, Rob, 2010. "The impact of network clustering and assortativity on epidemic behaviour," Theoretical Population Biology, Elsevier, vol. 77(1), pages 71-75.
- Campi, Gaetano & Bianconi, Antonio, 2022. "Periodic recurrent waves of Covid-19 epidemics and vaccination campaign," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0072168. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.