IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v73y2008i3p395-402.html
   My bibliography  Save this article

When can dispersal synchronize populations?

Author

Listed:
  • Goldwyn, Eli E.
  • Hastings, Alan

Abstract

While spatial synchrony of oscillating populations has been observed in many ecological systems, the causes of this phenomenon are still not well understood. The most common explanations have been the Moran effect (synchronous external stochastic influences) and the effect of dispersal among populations. Since ecological systems are typically subject to large spatially varying perturbations which destroy synchrony, a plausible mechanism explaining synchrony must produce rapid convergence to synchrony. We analyze the dynamics through time of the synchronizing effects of dispersal and, consequently, determine whether dispersal can be the mechanism which produces synchrony. Specifically, using methods new to ecology, we analyze a two patch predator–prey model, with identical weak dispersal between the patches. We find that a difference in time scales (i.e. one population has dynamics occurring much faster than the other) between the predator and prey species is the most important requirement for fast convergence to synchrony.

Suggested Citation

  • Goldwyn, Eli E. & Hastings, Alan, 2008. "When can dispersal synchronize populations?," Theoretical Population Biology, Elsevier, vol. 73(3), pages 395-402.
  • Handle: RePEc:eee:thpobi:v:73:y:2008:i:3:p:395-402
    DOI: 10.1016/j.tpb.2007.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580907001396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2007.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernd Blasius & Amit Huppert & Lewi Stone, 1999. "Complex dynamics and phase synchronization in spatially extended ecological systems," Nature, Nature, vol. 399(6734), pages 354-359, May.
    2. B. T. Grenfell & O. N. Bjørnstad & J. Kappey, 2001. "Travelling waves and spatial hierarchies in measles epidemics," Nature, Nature, vol. 414(6865), pages 716-723, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bagchi, Dweepabiswa & Arumugam, Ramesh & Chandrasekar, V.K. & Senthilkumar, D.V., 2022. "Metacommunity stability and persistence for predation turnoff in selective patches," Ecological Modelling, Elsevier, vol. 470(C).
    2. Jiale Ban & Yuanshi Wang & Hong Wu, 2022. "Dynamics of predator-prey systems with prey’s dispersal between patches," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(2), pages 550-569, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    2. Campi, Gaetano & Bianconi, Antonio, 2022. "Periodic recurrent waves of Covid-19 epidemics and vaccination campaign," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Frey, Erwin, 2010. "Evolutionary game theory: Theoretical concepts and applications to microbial communities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(20), pages 4265-4298.
    4. Ahmadi, Ali Akbar & Majd, Vahid Johari, 2009. "Robust synchronization of a class of uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1092-1096.
    5. Ge, Zheng-Ming & Chang, Ching-Ming & Chen, Yen-Sheng, 2006. "Anti-control of chaos of single time scale brushless dc motors and chaos synchronization of different order systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1298-1315.
    6. Ge, Zheng-Ming & Chang, Ching-Ming, 2009. "Nonlinear generalized synchronization of chaotic systems by pure error dynamics and elaborate nondiagonal Lyapunov function," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1959-1974.
    7. Chen, Hsien-Keng, 2005. "Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lü," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1049-1056.
    8. Nicola Bellomo & Richard Bingham & Mark A.J. Chaplain & Giovanni Dosi & Guido Forni & Damian A. Knopoff & John Lowengrub & Reidun Twarock & Maria Enrica Virgillito, 2020. "A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world," LEM Papers Series 2020/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. Hoang, Thang Manh, 2011. "Complex synchronization manifold in coupled time-delayed systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 48-57.
    10. Chryssi Giannitsarou & Stephen Kissler & Flavio Toxvaerd, 2021. "Waning Immunity and the Second Wave: Some Projections for SARS-CoV-2," American Economic Review: Insights, American Economic Association, vol. 3(3), pages 321-338, September.
    11. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Feng, Sha-Sha & Qiang, Cheng-Cang, 2013. "Self-organization of five species in a cyclic competition game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4675-4682.
    13. Mahmoud, Gamal M. & Aly, Shaban A. & Farghaly, Ahmed A., 2007. "On chaos synchronization of a complex two coupled dynamos system," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 178-187.
    14. Valenti, D. & Tranchina, L. & Brai, M. & Caruso, A. & Cosentino, C. & Spagnolo, B., 2008. "Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)," Ecological Modelling, Elsevier, vol. 213(3), pages 449-462.
    15. Ahmadi, Ali Akbar & Majd, Vahid Johari, 2009. "GCS of a class of chaotic dynamic systems with controller gain variations," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1238-1245.
    16. Gao, Meng & Li, Wenlong & Li, Zizhen & Dai, Huawei & Liu, Hongtao, 2007. "Spatial synchrony in host–parasitoid populations," Ecological Modelling, Elsevier, vol. 204(1), pages 29-39.
    17. Cagle, Sierra E. & Roelke, Daniel L., 2024. "Chaotic mixotroph dynamics arise with nutrient loading: Implications for mixotrophy as a harmful bloom forming mechanism," Ecological Modelling, Elsevier, vol. 492(C).
    18. Wang, Yi & Cao, Jinde & Sun, Gui-Quan & Li, Jing, 2014. "Effect of time delay on pattern dynamics in a spatial epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 137-148.
    19. Der Chyan Lin, 2013. "Synchrony in Broadband Fluctuation and the 2008 Financial Crisis," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
    20. Lei, Youming & Xu, Wei & Xie, Wenxian, 2007. "Synchronization of two chaotic four-dimensional systems using active control," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1823-1829.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:73:y:2008:i:3:p:395-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.