IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v160y2022ics096007792200426x.html
   My bibliography  Save this article

Periodic recurrent waves of Covid-19 epidemics and vaccination campaign

Author

Listed:
  • Campi, Gaetano
  • Bianconi, Antonio

Abstract

While understanding of periodic recurrent waves of Covid-19 epidemics would aid to combat the pandemics, quantitative analysis of data over a two years period from the outbreak, is lacking. The complexity of Covid-19 recurrent waves is related with the concurrent role of i) the containment measures enforced to mitigate the epidemics spreading ii) the rate of viral gene mutations, and iii) the variable immune response of the host implemented by vaccination. This work focuses on the effect of massive vaccination and gene variants on the recurrent waves in a representative case of countries enforcing mitigation and vaccination strategy. The spreading rate is measured by the ratio between the reproductive number Rt(t) and the doubling time Td(t) called RIC-index and the daily fatalities number. The dynamics of the Covid-19 epidemics have been studied by wavelet analysis and represented by a non-linear helicoid vortex in a 3D space where both RIC-index and fatalities change with time. The onset of periodic recurrent waves has been identified by the transition from convergent to divergent trajectories on the helicoid vortex. We report a main period of recurrent waves of 120 days and the elongation of this period after the vaccination campaign.

Suggested Citation

  • Campi, Gaetano & Bianconi, Antonio, 2022. "Periodic recurrent waves of Covid-19 epidemics and vaccination campaign," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s096007792200426x
    DOI: 10.1016/j.chaos.2022.112216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200426X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Navarro-Urrios & Néstor E. Capuj & Martín F. Colombano & P. David García & Marianna Sledzinska & Francesc Alzina & Amadeu Griol & Alejandro Martínez & Clivia M. Sotomayor-Torres, 2017. "Nonlinear dynamics and chaos in an optomechanical beam," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    2. Gaetano Valenza & Luca Citi & Riccardo Barbieri, 2014. "Estimation of Instantaneous Complex Dynamics through Lyapunov Exponents: A Study on Heartbeat Dynamics," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-17, August.
    3. Bernd Blasius & Amit Huppert & Lewi Stone, 1999. "Complex dynamics and phase synchronization in spatially extended ecological systems," Nature, Nature, vol. 399(6734), pages 354-359, May.
    4. Cadoni, Mariano, 2020. "How to reduce epidemic peaks keeping under control the time-span of the epidemic," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Ziff, Robert M., 2021. "Percolation and the pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    6. B. T. Grenfell & O. N. Bjørnstad & J. Kappey, 2001. "Travelling waves and spatial hierarchies in measles epidemics," Nature, Nature, vol. 414(6865), pages 716-723, December.
    7. Derek A.T. Cummings & Rafael A. Irizarry & Norden E. Huang & Timothy P. Endy & Ananda Nisalak & Kumnuan Ungchusak & Donald S. Burke, 2004. "Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand," Nature, Nature, vol. 427(6972), pages 344-347, January.
    8. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    9. Francisco Arroyo-Marioli & Francisco Bullano & Simas Kucinskas & Carlos Rondón-Moreno, 2021. "Tracking R of COVID-19: A new real-time estimation using the Kalman filter," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-16, January.
    10. Ewen Callaway, 2021. "Beyond Omicron: what’s next for COVID’s viral evolution," Nature, Nature, vol. 600(7888), pages 204-207, December.
    11. Xin Fang & Jihong Wen & Bernard Bonello & Jianfei Yin & Dianlong Yu, 2017. "Ultra-low and ultra-broad-band nonlinear acoustic metamaterials," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frey, Erwin, 2010. "Evolutionary game theory: Theoretical concepts and applications to microbial communities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(20), pages 4265-4298.
    2. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    3. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    4. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Goldwyn, Eli E. & Hastings, Alan, 2008. "When can dispersal synchronize populations?," Theoretical Population Biology, Elsevier, vol. 73(3), pages 395-402.
    6. Mohan, Nishith & Kumari, Nitu, 2021. "Positive steady states of a SI epidemic model with cross diffusion," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    7. Ge, Zheng-Ming & Chang, Ching-Ming & Chen, Yen-Sheng, 2006. "Anti-control of chaos of single time scale brushless dc motors and chaos synchronization of different order systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1298-1315.
    8. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Chen, Hsien-Keng, 2005. "Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lü," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1049-1056.
    11. Jiao Zhang & Qingcheng Zeng, 2017. "Modelling the volatility of the tanker freight market based on improved empirical mode decomposition," Applied Economics, Taylor & Francis Journals, vol. 49(17), pages 1655-1667, April.
    12. Phaisarn Jeefoo & Nitin Kumar Tripathi & Marc Souris, 2010. "Spatio-Temporal Diffusion Pattern and Hotspot Detection of Dengue in Chachoengsao Province, Thailand," IJERPH, MDPI, vol. 8(1), pages 1-24, December.
    13. Hoang, Thang Manh, 2011. "Complex synchronization manifold in coupled time-delayed systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 48-57.
    14. Daniel L. Millimet & Christopher F. Parmeter, 2022. "COVID‐19 severity: A new approach to quantifying global cases and deaths," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1178-1215, July.
    15. Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    16. Chryssi Giannitsarou & Stephen Kissler & Flavio Toxvaerd, 2021. "Waning Immunity and the Second Wave: Some Projections for SARS-CoV-2," American Economic Review: Insights, American Economic Association, vol. 3(3), pages 321-338, September.
    17. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    18. Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
    19. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Gächter, Martin & Huber, Florian & Meier, Martin, 2022. "A shot for the US economy," Finance Research Letters, Elsevier, vol. 47(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s096007792200426x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.