IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v5y2021i10d10.1038_s41562-021-01177-7.html
   My bibliography  Save this article

Bayesian Analysis Reporting Guidelines

Author

Listed:
  • John K. Kruschke

    (Indiana University, Bloomington)

Abstract

Previous surveys of the literature have shown that reports of statistical analyses often lack important information, causing lack of transparency and failure of reproducibility. Editors and authors agree that guidelines for reporting should be encouraged. This Review presents a set of Bayesian analysis reporting guidelines (BARG). The BARG encompass the features of previous guidelines, while including many additional details for contemporary Bayesian analyses, with explanations. An extensive example of applying the BARG is presented. The BARG should be useful to researchers, authors, reviewers, editors, educators and students. Utilization, endorsement and promotion of the BARG may improve the quality, transparency and reproducibility of Bayesian analyses.

Suggested Citation

  • John K. Kruschke, 2021. "Bayesian Analysis Reporting Guidelines," Nature Human Behaviour, Nature, vol. 5(10), pages 1282-1291, October.
  • Handle: RePEc:nat:nathum:v:5:y:2021:i:10:d:10.1038_s41562-021-01177-7
    DOI: 10.1038/s41562-021-01177-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-021-01177-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-021-01177-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel J. Benjamin & James O. Berger & Magnus Johannesson & Brian A. Nosek & E.-J. Wagenmakers & Richard Berk & Kenneth A. Bollen & Björn Brembs & Lawrence Brown & Colin Camerer & David Cesarini & Chr, 2018. "Redefine statistical significance," Nature Human Behaviour, Nature, vol. 2(1), pages 6-10, January.
      • Daniel Benjamin & James Berger & Magnus Johannesson & Brian Nosek & E. Wagenmakers & Richard Berk & Kenneth Bollen & Bjorn Brembs & Lawrence Brown & Colin Camerer & David Cesarini & Christopher Chambe, 2017. "Redefine Statistical Significance," Artefactual Field Experiments 00612, The Field Experiments Website.
    2. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
    3. Balazs Aczel & Rink Hoekstra & Andrew Gelman & Eric-Jan Wagenmakers & Irene G. Klugkist & Jeffrey N. Rouder & Joachim Vandekerckhove & Michael D. Lee & Richard D. Morey & Wolf Vanpaemel & Zoltan Diene, 2020. "Discussion points for Bayesian inference," Nature Human Behaviour, Nature, vol. 4(6), pages 561-563, June.
    4. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    5. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasuhiro Kanakogi & Michiko Miyazaki & Hideyuki Takahashi & Hiroki Yamamoto & Tessei Kobayashi & Kazuo Hiraki, 2022. "Third-party punishment by preverbal infants," Nature Human Behaviour, Nature, vol. 6(9), pages 1234-1242, September.
    2. Manh-Toan Ho & Thanh-Huyen T. Nguyen & Minh-Hoang Nguyen & Viet-Phuong La & Quan-Hoang Vuong, 2022. "Virtual tree, real impact: how simulated worlds associate with the perception of limited resources," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelter, Riko, 2022. "Power analysis and type I and type II error rates of Bayesian nonparametric two-sample tests for location-shifts based on the Bayes factor under Cauchy priors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    2. Kerenaftali Klein & Stefanie Hennig & Sanjoy Ketan Paul, 2016. "A Bayesian Modelling Approach with Balancing Informative Prior for Analysing Imbalanced Data," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-12, April.
    3. Lin Deng & Michael Stanley Smith & Worapree Maneesoonthorn, 2023. "Large Skew-t Copula Models and Asymmetric Dependence in Intraday Equity Returns," Papers 2308.05564, arXiv.org, revised Jul 2024.
    4. Chen, Kefei & O'Leary, Rebecca A. & Evans, Fiona H., 2019. "A simple and parsimonious generalised additive model for predicting wheat yield in a decision support tool," Agricultural Systems, Elsevier, vol. 173(C), pages 140-150.
    5. Eric-Jan Wagenmakers & Alexandra Sarafoglou & Sil Aarts & Casper Albers & Johannes Algermissen & Štěpán Bahník & Noah Dongen & Rink Hoekstra & David Moreau & Don Ravenzwaaij & Aljaž Sluga & Franziska , 2021. "Seven steps toward more transparency in statistical practice," Nature Human Behaviour, Nature, vol. 5(11), pages 1473-1480, November.
    6. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    7. Hancock, Joana & Vieira, Sara & Lima, Hipólito & Schmitt, Vanessa & Pereira, Jaconias & Rebelo, Rui & Girondot, Marc, 2019. "Overcoming field monitoring restraints in estimating marine turtle internesting period by modelling individual nesting behaviour using capture-mark-recapture data," Ecological Modelling, Elsevier, vol. 402(C), pages 76-84.
    8. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    9. Dreber, Anna & Heikensten, Emma & Säve-Söderbergh, Jenny, 2022. "Why do women ask for less?," Labour Economics, Elsevier, vol. 78(C).
    10. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2001. "Comparing dynamic equilibrium economies to data," FRB Atlanta Working Paper 2001-23, Federal Reserve Bank of Atlanta.
    11. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.
    12. Enver Yücesan, 1993. "Randomization tests for initialization bias in simulation output," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(5), pages 643-663, August.
    13. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    14. Atahan Afsar; José Elías Gallegos; Richard Jaimes; Edgar Silgado Gómez & José Elías Gallegos & Richard Jaimes & Edgar Silgado Gómez, 2020. "Reconciling Empirics and Theory: The Behavioral Hybrid New Keynesian Model," Vniversitas Económica 18560, Universidad Javeriana - Bogotá.
    15. Bai, Yizhou & Xue, Cheng, 2021. "An empirical study on the regulated Chinese agricultural commodity futures market based on skew Ornstein-Uhlenbeck model," Research in International Business and Finance, Elsevier, vol. 57(C).
    16. John A. List, 2024. "Optimally generate policy-based evidence before scaling," Nature, Nature, vol. 626(7999), pages 491-499, February.
    17. Burda Martin & Bélisle Louis, 2019. "Copula multivariate GARCH model with constrained Hamiltonian Monte Carlo," Dependence Modeling, De Gruyter, vol. 7(1), pages 133-149, January.
    18. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
    19. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    20. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:5:y:2021:i:10:d:10.1038_s41562-021-01177-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.