IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57295-7.html
   My bibliography  Save this article

Kingdom-specific lipid unsaturation calibrates sequence evolution in membrane arm subunits of eukaryotic respiratory complexes

Author

Listed:
  • Pooja Gupta

    (Uppal Road
    Academy of Scientific and Innovative Research (AcSIR))

  • Sristi Chakroborty

    (Uppal Road)

  • Arun K. Rathod

    (Academy of Scientific and Innovative Research (AcSIR)
    CSIR- Central Salt and Marine Chemical Research Institute)

  • K. Ranjith Kumar

    (Uppal Road)

  • Shreya Bhat

    (Uppal Road)

  • Suparna Ghosh

    (Uppal Road
    Academy of Scientific and Innovative Research (AcSIR))

  • Pallavi Rao T

    (Uppal Road
    Academy of Scientific and Innovative Research (AcSIR))

  • Kameshwari Yele

    (Uppal Road)

  • Raman Bakthisaran

    (Uppal Road)

  • R. Nagaraj

    (Uppal Road)

  • Moutusi Manna

    (Academy of Scientific and Innovative Research (AcSIR)
    CSIR- Central Salt and Marine Chemical Research Institute)

  • Swasti Raychaudhuri

    (Uppal Road
    Academy of Scientific and Innovative Research (AcSIR))

Abstract

Sequence evolution of protein complexes (PCs) is constrained by protein-protein interactions (PPIs). PPI-interfaces are predominantly conserved and hotspots for disease-related mutations. How do lipid-protein interactions (LPIs) constrain sequence evolution of membrane-PCs? We explore Respiratory Complexes (RCs) as a case study as these allow to compare sequence evolution in subunits exposed to both lipids in inner-mitochondrial membrane (IMM) and lipid-free aqueous matrix. We find that lipid-exposed surfaces of the IMM-subunits but not of the matrix subunits are populated with non-PPI disease-causing mutations signifying LPIs in stabilizing RCs. Further, IMM-subunits including their exposed surfaces show high intra-kingdom sequence conservation but remarkably diverge beyond. Molecular Dynamics simulation suggests contrasting LPIs of structurally superimposable but sequence-wise diverged IMM-exposed helices of Complex I (CI) subunit Ndufa1 from human and Arabidopsis depending on kingdom-specific unsaturation of cardiolipin fatty acyl chains. in cellulo assays consolidate inter-kingdom incompatibility of Ndufa1-helices due to the lipid-exposed amino acids. Plant-specific unsaturated fatty acids in human cells also trigger CI-instability. Taken together, we posit that altered LPIs calibrate sequence evolution at the IMM-arms of eukaryotic RCs.

Suggested Citation

  • Pooja Gupta & Sristi Chakroborty & Arun K. Rathod & K. Ranjith Kumar & Shreya Bhat & Suparna Ghosh & Pallavi Rao T & Kameshwari Yele & Raman Bakthisaran & R. Nagaraj & Moutusi Manna & Swasti Raychaudh, 2025. "Kingdom-specific lipid unsaturation calibrates sequence evolution in membrane arm subunits of eukaryotic respiratory complexes," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57295-7
    DOI: 10.1038/s41467-025-57295-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57295-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57295-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David A. Stroud & Elliot E. Surgenor & Luke E. Formosa & Boris Reljic & Ann E. Frazier & Marris G. Dibley & Laura D. Osellame & Tegan Stait & Traude H. Beilharz & David R. Thorburn & Agus Salim & Mich, 2016. "Accessory subunits are integral for assembly and function of human mitochondrial complex I," Nature, Nature, vol. 538(7623), pages 123-126, October.
    2. Laura F. Fielden & Jakob D. Busch & Sandra G. Merkt & Iniyan Ganesan & Conny Steiert & Hanna B. Hasselblatt & Jon V. Busto & Christophe Wirth & Nicole Zufall & Sibylle Jungbluth & Katja Noll & Julia M, 2023. "Central role of Tim17 in mitochondrial presequence protein translocation," Nature, Nature, vol. 621(7979), pages 627-634, September.
    3. Sara Cogliati & Enrique Calvo & Marta Loureiro & Adela M. Guaras & Rocio Nieto-Arellano & Carolina Garcia-Poyatos & Iakes Ezkurdia & Nadia Mercader & Jesús Vázquez & José Antonio Enriquez, 2016. "Mechanism of super-assembly of respiratory complexes III and IV," Nature, Nature, vol. 539(7630), pages 579-582, November.
    4. Sue Im Sim & Yuanyuan Chen & Diane L. Lynch & James C. Gumbart & Eunyong Park, 2023. "Structural basis of mitochondrial protein import by the TIM23 complex," Nature, Nature, vol. 621(7979), pages 620-626, September.
    5. Pooja Gupta & Sristi Chakroborty & Arun K. Rathod & K. Ranjith Kumar & Shreya Bhat & Suparna Ghosh & Pallavi Rao T & Kameshwari Yele & Raman Bakthisaran & R. Nagaraj & Moutusi Manna & Swasti Raychaudh, 2025. "Kingdom-specific lipid unsaturation calibrates sequence evolution in membrane arm subunits of eukaryotic respiratory complexes," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    6. Karol Fiedorczuk & James A. Letts & Gianluca Degliesposti & Karol Kaszuba & Mark Skehel & Leonid A. Sazanov, 2016. "Atomic structure of the entire mammalian mitochondrial complex I," Nature, Nature, vol. 538(7625), pages 406-410, October.
    7. Cuihong Wan & Blake Borgeson & Sadhna Phanse & Fan Tu & Kevin Drew & Greg Clark & Xuejian Xiong & Olga Kagan & Julian Kwan & Alexandr Bezginov & Kyle Chessman & Swati Pal & Graham Cromar & Ophelia Pap, 2015. "Panorama of ancient metazoan macromolecular complexes," Nature, Nature, vol. 525(7569), pages 339-344, September.
    8. Fangzhu Han & Yiqi Hu & Mengchen Wu & Zhaoxiang He & Hongtao Tian & Long Zhou, 2023. "Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pooja Gupta & Sristi Chakroborty & Arun K. Rathod & K. Ranjith Kumar & Shreya Bhat & Suparna Ghosh & Pallavi Rao T & Kameshwari Yele & Raman Bakthisaran & R. Nagaraj & Moutusi Manna & Swasti Raychaudh, 2025. "Kingdom-specific lipid unsaturation calibrates sequence evolution in membrane arm subunits of eukaryotic respiratory complexes," Nature Communications, Nature, vol. 16(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangzhu Han & Yiqi Hu & Mengchen Wu & Zhaoxiang He & Hongtao Tian & Long Zhou, 2023. "Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yuwan Chen & Wen Zhou & Yufei Xia & Weijie Zhang & Qun Zhao & Xinwei Li & Hang Gao & Zhen Liang & Guanghui Ma & Kaiguang Yang & Lihua Zhang & Yukui Zhang, 2023. "Targeted cross-linker delivery for the in situ mapping of protein conformations and interactions in mitochondria," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Enrique Balderas & David R. Eberhardt & Sandra Lee & John M. Pleinis & Salah Sommakia & Anthony M. Balynas & Xue Yin & Mitchell C. Parker & Colin T. Maguire & Scott Cho & Marta W. Szulik & Anna Bakhti, 2022. "Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Zhaoxiang He & Mengchen Wu & Hongtao Tian & Liangdong Wang & Yiqi Hu & Fangzhu Han & Jiancang Zhou & Yong Wang & Long Zhou, 2024. "Euglena’s atypical respiratory chain adapts to the discoidal cristae and flexible metabolism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. M. Tanvir Rahman & M. Kristian Koski & Joanna Panecka-Hofman & Werner Schmitz & Alexander J. Kastaniotis & Rebecca C. Wade & Rik K. Wierenga & J. Kalervo Hiltunen & Kaija J. Autio, 2023. "An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Amika Singla & Daniel J. Boesch & Ho Yee Joyce Fung & Chigozie Ngoka & Avery S. Enriquez & Ran Song & Daniel A. Kramer & Yan Han & Esther Banarer & Andrew Lemoff & Puneet Juneja & Daniel D. Billadeau , 2024. "Structural basis for Retriever-SNX17 assembly and endosomal sorting," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Krishna B. S. Swamy & Hsin-Yi Lee & Carmina Ladra & Chien-Fu Jeff Liu & Jung-Chi Chao & Yi-Yun Chen & Jun-Yi Leu, 2022. "Proteotoxicity caused by perturbed protein complexes underlies hybrid incompatibility in yeast," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Nilesh Kumar & M. Shahid Mukhtar, 2024. "Viral Targets in the Human Interactome with Comprehensive Centrality Analysis: SARS-CoV-2, a Case Study," Data, MDPI, vol. 9(8), pages 1-12, August.
    9. Irene H. Flønes & Lilah Toker & Dagny Ann Sandnes & Martina Castelli & Sepideh Mostafavi & Njål Lura & Omnia Shadad & Erika Fernandez-Vizarra & Cèlia Painous & Alexandra Pérez-Soriano & Yaroslau Compt, 2024. "Mitochondrial complex I deficiency stratifies idiopathic Parkinson’s disease," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Paul T. Morse & Gonzalo Pérez-Mejías & Junmei Wan & Alice A. Turner & Inmaculada Márquez & Hasini A. Kalpage & Asmita Vaishnav & Matthew P. Zurek & Philipp P. Huettemann & Katherine Kim & Tasnim Arrou, 2023. "Cytochrome c lysine acetylation regulates cellular respiration and cell death in ischemic skeletal muscle," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Pierre C. Havugimana & Raghuveera Kumar Goel & Sadhna Phanse & Ahmed Youssef & Dzmitry Padhorny & Sergei Kotelnikov & Dima Kozakov & Andrew Emili, 2022. "Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Cesare Granata & Nikeisha J. Caruana & Javier Botella & Nicholas A. Jamnick & Kevin Huynh & Jujiao Kuang & Hans A. Janssen & Boris Reljic & Natalie A. Mellett & Adrienne Laskowski & Tegan L. Stait & A, 2021. "High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    13. Michael A. Skinnider & Mopelola O. Akinlaja & Leonard J. Foster, 2023. "Mapping protein states and interactions across the tree of life with co-fractionation mass spectrometry," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Hélène Bret & Jinmei Gao & Diego Javier Zea & Jessica Andreani & Raphaël Guerois, 2024. "From interaction networks to interfaces, scanning intrinsically disordered regions using AlphaFold2," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Blanca Jiménez-Gómez & Patricia Ortega-Sáenz & Lin Gao & Patricia González-Rodríguez & Paula García-Flores & Navdeep Chandel & José López-Barneo, 2023. "Transgenic NADH dehydrogenase restores oxygen regulation of breathing in mitochondrial complex I-deficient mice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Minji Kim & Remigiusz A. Serwa & Lukasz Samluk & Ida Suppanz & Agata Kodroń & Tomasz M. Stępkowski & Praveenraj Elancheliyan & Biniyam Tsegaye & Silke Oeljeklaus & Michal Wasilewski & Bettina Warschei, 2023. "Immunoproteasome-specific subunit PSMB9 induction is required to regulate cellular proteostasis upon mitochondrial dysfunction," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    17. Ami Kobayashi & Kotaro Azuma & Toshihiko Takeiwa & Toshimori Kitami & Kuniko Horie & Kazuhiro Ikeda & Satoshi Inoue, 2023. "A FRET-based respirasome assembly screen identifies spleen tyrosine kinase as a target to improve muscle mitochondrial respiration and exercise performance in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57295-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.