IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38158-5.html
   My bibliography  Save this article

Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae

Author

Listed:
  • Fangzhu Han

    (Zhejiang University School of Medicine
    Zhejiang University School of Medicine)

  • Yiqi Hu

    (Zhejiang University School of Medicine
    Zhejiang University School of Medicine)

  • Mengchen Wu

    (Zhejiang University School of Medicine
    Zhejiang University School of Medicine)

  • Zhaoxiang He

    (Zhejiang University School of Medicine
    Zhejiang University School of Medicine)

  • Hongtao Tian

    (Zhejiang University School of Medicine
    Zhejiang University School of Medicine)

  • Long Zhou

    (Zhejiang University School of Medicine
    Zhejiang University School of Medicine)

Abstract

Tetrahymena thermophila, a classic ciliate model organism, has been shown to possess tubular mitochondrial cristae and highly divergent electron transport chain involving four transmembrane protein complexes (I–IV). Here we report cryo-EM structures of its ~8 MDa megacomplex IV2 + (I + III2 + II)2, as well as a ~ 10.6 MDa megacomplex (IV2 + I + III2 + II)2 at lower resolution. In megacomplex IV2 + (I + III2 + II)2, each CIV2 protomer associates one copy of supercomplex I + III2 and one copy of CII, forming a half ring-shaped architecture that adapts to the membrane curvature of mitochondrial cristae. Megacomplex (IV2 + I + III2 + II)2 defines the relative position between neighbouring half rings and maintains the proximity between CIV2 and CIII2 cytochrome c binding sites. Our findings expand the current understanding of divergence in eukaryotic electron transport chain organization and how it is related to mitochondrial morphology.

Suggested Citation

  • Fangzhu Han & Yiqi Hu & Mengchen Wu & Zhaoxiang He & Hongtao Tian & Long Zhou, 2023. "Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38158-5
    DOI: 10.1038/s41467-023-38158-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38158-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38158-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher C. Page & Christopher C. Moser & Xiaoxi Chen & P. Leslie Dutton, 1999. "Natural engineering principles of electron tunnelling in biological oxidation–reduction," Nature, Nature, vol. 402(6757), pages 47-52, November.
    2. Jinke Gu & Meng Wu & Runyu Guo & Kaige Yan & Jianlin Lei & Ning Gao & Maojun Yang, 2016. "The architecture of the mammalian respirasome," Nature, Nature, vol. 537(7622), pages 639-643, September.
    3. Zhaolei Zhang & Lishar Huang & Vladimir M. Shulmeister & Young-In Chi & Kyeong Kyu Kim & Li-Wei Hung & Antony R. Crofts & Edward A. Berry & Sung-Hou Kim, 1998. "Electron transfer by domain movement in cytochrome bc1," Nature, Nature, vol. 392(6677), pages 677-684, April.
    4. Sara Cogliati & Enrique Calvo & Marta Loureiro & Adela M. Guaras & Rocio Nieto-Arellano & Carolina Garcia-Poyatos & Iakes Ezkurdia & Nadia Mercader & Jesús Vázquez & José Antonio Enriquez, 2016. "Mechanism of super-assembly of respiratory complexes III and IV," Nature, Nature, vol. 539(7630), pages 579-582, November.
    5. Wei-Chun Kao & Claire Ortmann de Percin Northumberland & Tat Cheung Cheng & Julio Ortiz & Alexandre Durand & Ottilie Loeffelholz & Oliver Schilling & Martin L. Biniossek & Bruno P. Klaholz & Carola Hu, 2022. "Structural basis for safe and efficient energy conversion in a respiratory supercomplex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. James A. Letts & Karol Fiedorczuk & Leonid A. Sazanov, 2016. "The architecture of respiratory supercomplexes," Nature, Nature, vol. 537(7622), pages 644-648, September.
    7. Rasmus Kock Flygaard & Alexander Mühleip & Victor Tobiasson & Alexey Amunts, 2020. "Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    8. Irene Vercellino & Leonid A. Sazanov, 2021. "Structure and assembly of the mammalian mitochondrial supercomplex CIII2CIV," Nature, Nature, vol. 598(7880), pages 364-367, October.
    9. Karol Fiedorczuk & James A. Letts & Gianluca Degliesposti & Karol Kaszuba & Mark Skehel & Leonid A. Sazanov, 2016. "Atomic structure of the entire mammalian mitochondrial complex I," Nature, Nature, vol. 538(7625), pages 406-410, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoxiang He & Mengchen Wu & Hongtao Tian & Liangdong Wang & Yiqi Hu & Fangzhu Han & Jiancang Zhou & Yong Wang & Long Zhou, 2024. "Euglena’s atypical respiratory chain adapts to the discoidal cristae and flexible metabolism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Riepl & Ana P. Gamiz-Hernandez & Terezia Kovalova & Sylwia M. Król & Sophie L. Mader & Dan Sjöstrand & Martin Högbom & Peter Brzezinski & Ville R. I. Kaila, 2024. "Long-range charge transfer mechanism of the III2IV2 mycobacterial supercomplex," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Zhaoxiang He & Mengchen Wu & Hongtao Tian & Liangdong Wang & Yiqi Hu & Fangzhu Han & Jiancang Zhou & Yong Wang & Long Zhou, 2024. "Euglena’s atypical respiratory chain adapts to the discoidal cristae and flexible metabolism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Ami Kobayashi & Kotaro Azuma & Toshihiko Takeiwa & Toshimori Kitami & Kuniko Horie & Kazuhiro Ikeda & Satoshi Inoue, 2023. "A FRET-based respirasome assembly screen identifies spleen tyrosine kinase as a target to improve muscle mitochondrial respiration and exercise performance in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Anuj Kumar & Florian Kremp & Jennifer Roth & Sven A. Freibert & Volker Müller & Jan M. Schuller, 2023. "Molecular architecture and electron transfer pathway of the Stn family transhydrogenase," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Ana Paula Lobez & Fei Wu & Justin M. Di Trani & John L. Rubinstein & Mikael Oliveberg & Peter Brzezinski & Agnes Moe, 2024. "Electron transfer in the respiratory chain at low salinity," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Enrique Balderas & David R. Eberhardt & Sandra Lee & John M. Pleinis & Salah Sommakia & Anthony M. Balynas & Xue Yin & Mitchell C. Parker & Colin T. Maguire & Scott Cho & Marta W. Szulik & Anna Bakhti, 2022. "Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. M. Tanvir Rahman & M. Kristian Koski & Joanna Panecka-Hofman & Werner Schmitz & Alexander J. Kastaniotis & Rebecca C. Wade & Rik K. Wierenga & J. Kalervo Hiltunen & Kaija J. Autio, 2023. "An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Ralf Steinhilper & Gabriele Höff & Johann Heider & Bonnie J. Murphy, 2022. "Structure of the membrane-bound formate hydrogenlyase complex from Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Yeonhwa Yu & Yongfan Shi & Young Wan Kwon & Yoobin Choi & Yusik Kim & Jeong-Geol Na & June Huh & Jeewon Lee, 2024. "A rationally designed miniature of soluble methane monooxygenase enables rapid and high-yield methanol production in Escherichia coli," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Corey F. Hryc & Venkata K. P. S. Mallampalli & Evgeniy I. Bovshik & Stavros Azinas & Guizhen Fan & Irina I. Serysheva & Genevieve C. Sparagna & Matthew L. Baker & Eugenia Mileykovskaya & William Dowha, 2023. "Structural insights into cardiolipin replacement by phosphatidylglycerol in a cardiolipin-lacking yeast respiratory supercomplex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Jiashen Zhou & Lin Zhang & Liping Zeng & Lu Yu & Yuanyuan Duan & Siqi Shen & Jingyan Hu & Pan Zhang & Wenyan Song & Xiaoxue Ruan & Jing Jiang & Yinan Zhang & Lu Zhou & Jia Jia & Xudong Hang & Changlin, 2021. "Helicobacter pylori FabX contains a [4Fe-4S] cluster essential for unsaturated fatty acid synthesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Lorenzo Cimmino & Américo G. Duarte & Dongchun Ni & Babatunde E. Ekundayo & Inês A. C. Pereira & Henning Stahlberg & Christof Holliger & Julien Maillard, 2023. "Structure of a membrane-bound menaquinol:organohalide oxidoreductase," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Ondřej Gahura & Alexander Mühleip & Carolina Hierro-Yap & Brian Panicucci & Minal Jain & David Hollaus & Martina Slapničková & Alena Zíková & Alexey Amunts, 2022. "An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Jun-ichi Kishikawa & Moe Ishikawa & Takahiro Masuya & Masatoshi Murai & Yuki Kitazumi & Nicole L. Butler & Takayuki Kato & Blanca Barquera & Hideto Miyoshi, 2022. "Cryo-EM structures of Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Suk Min Kim & Sung Heuck Kang & Jinhee Lee & Yoonyoung Heo & Eleni G. Poloniataki & Jingu Kang & Hye-Jin Yoon & So Yeon Kong & Yaejin Yun & Hyunwoo Kim & Jungki Ryu & Hyung Ho Lee & Yong Hwan Kim, 2024. "Identifying a key spot for electron mediator-interaction to tailor CO dehydrogenase’s affinity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Hui Yang & Qingqing Li & Xingxing Chen & Mingzhe Weng & Yakai Huang & Qiwen Chen & Xiaocen Liu & Haoyu Huang & Yanhuizhi Feng & Hanyu Zhou & Mengying Zhang & Weiya Pei & Xueqin Li & Qingsheng Fu & Lia, 2024. "Targeting SOX13 inhibits assembly of respiratory chain supercomplexes to overcome ferroptosis resistance in gastric cancer," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    17. Nathan M. Ennist & Zhenyu Zhao & Steven E. Stayrook & Bohdana M. Discher & P. Leslie Dutton & Christopher C. Moser, 2022. "De novo protein design of photochemical reaction centers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Emanuela Gatto & Raffaella Lettieri & Luigi Vesce & Mariano Venanzi, 2022. "Peptide Materials in Dye Sensitized Solar Cells," Energies, MDPI, vol. 15(15), pages 1-13, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38158-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.