Artificial cells for in vivo biomedical applications through red blood cell biomimicry
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-46732-8
Download full text from publisher
References listed on IDEAS
- Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Thomas Litschel & Charlotte F. Kelley & Danielle Holz & Maral Adeli Koudehi & Sven K. Vogel & Laura Burbaum & Naoko Mizuno & Dimitrios Vavylonis & Petra Schwille, 2021. "Reconstitution of contractile actomyosin rings in vesicles," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Xuqing Zhang & Mengyao Luo & Shamael R. Dastagir & Mellissa Nixon & Annie Khamhoung & Andrea Schmidt & Albert Lee & Naren Subbiah & Douglas C. McLaughlin & Christopher L. Moore & Mary Gribble & Nichol, 2021. "Engineered red blood cells as an off-the-shelf allogeneic anti-tumor therapeutic," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
- Siddharth Deshpande & Yaron Caspi & Anna E. C. Meijering & Cees Dekker, 2016. "Octanol-assisted liposome assembly on chip," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
- Rafi Chapanian & David H. Kwan & Iren Constantinescu & Fathima A. Shaikh & Nicholas A..A. Rossi & Stephen G Withers & Jayachandran N Kizhakkedathu, 2014. "Enhancement of biological reactions on cell surfaces via macromolecular crowding," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
- Qingchuan Li & Shubin Li & Xiangxiang Zhang & Weili Xu & Xiaojun Han, 2020. "Programmed magnetic manipulation of vesicles into spatially coded prototissue architectures arrays," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Aravind Chandrasekaran & Kristin Graham & Jeanne C. Stachowiak & Padmini Rangamani, 2024. "Kinetic trapping organizes actin filaments within liquid-like protein droplets," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Shubin Li & Yingming Zhao & Shuqi Wu & Xiangxiang Zhang & Boyu Yang & Liangfei Tian & Xiaojun Han, 2023. "Regulation of species metabolism in synthetic community systems by environmental pH oscillations," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Jingjing Zhao & Xiaojun Han, 2024. "Investigation of artificial cells containing the Par system for bacterial plasmid segregation and inheritance mimicry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Songyang Liu & Yanwen Zhang & Xiaoxiao He & Mei Li & Jin Huang & Xiaohai Yang & Kemin Wang & Stephen Mann & Jianbo Liu, 2022. "Signal processing and generation of bioactive nitric oxide in a model prototissue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Xiangxiang Zhang & Chao Li & Fukai Liu & Wei Mu & Yongshuo Ren & Boyu Yang & Xiaojun Han, 2022. "High-throughput production of functional prototissues capable of producing NO for vasodilation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Jin Li & William D. Jamieson & Pantelitsa Dimitriou & Wen Xu & Paul Rohde & Boris Martinac & Matthew Baker & Bruce W. Drinkwater & Oliver K. Castell & David A. Barrow, 2022. "Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Shunshi Kohyama & Adrián Merino-Salomón & Petra Schwille, 2022. "In vitro assembly, positioning and contraction of a division ring in minimal cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Ryota Sakamoto & Michael P. Murrell, 2024. "Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46732-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.