IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v411y2001i6839d10.1038_35081021.html
   My bibliography  Save this article

Jamming phase diagram for attractive particles

Author

Listed:
  • V. Trappe

    (Harvard University
    University of Fribourg)

  • V. Prasad

    (Harvard University)

  • Luca Cipelletti

    (Harvard University
    University of Montpellier)

  • P. N. Segre

    (Harvard University
    NASA, Marshall Space Flight Center)

  • D. A. Weitz

    (Harvard University)

Abstract

A wide variety of systems, including granular media, colloidal suspensions and molecular systems, exhibit non-equilibrium transitions from a fluid-like to a solid-like state, characterized solely by the sudden arrest of their dynamics. Crowding or jamming of the constituent particles traps them kinetically, precluding further exploration of the phase space1. The disordered fluid-like structure remains essentially unchanged at the transition. The jammed solid can be refluidized by thermalization, through temperature or vibration, or by an applied stress. The generality of the jamming transition led to the proposal2 of a unifying description, based on a jamming phase diagram. It was further postulated that attractive interactions might have the same effect in jamming the system as a confining pressure, and thus could be incorporated into the generalized description. Here we study experimentally the fluid-to-solid transition of weakly attractive colloidal particles, which undergo markedly similar gelation behaviour with increasing concentration and decreasing thermalization or stress. Our results support the concept of a jamming phase diagram for attractive colloidal particles, providing a unifying link between the glass transition3, gelation4,5 and aggregation6,7,8.

Suggested Citation

  • V. Trappe & V. Prasad & Luca Cipelletti & P. N. Segre & D. A. Weitz, 2001. "Jamming phase diagram for attractive particles," Nature, Nature, vol. 411(6839), pages 772-775, June.
  • Handle: RePEc:nat:nature:v:411:y:2001:i:6839:d:10.1038_35081021
    DOI: 10.1038/35081021
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35081021
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35081021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Céline Dinet & Alejandro Torres-Sánchez & Roberta Lanfranco & Lorenzo Michele & Marino Arroyo & Margarita Staykova, 2023. "Patterning and dynamics of membrane adhesion under hydraulic stress," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Shravan Pradeep & Paulo E. Arratia & Douglas J. Jerolmack, 2024. "Origins of complexity in the rheology of Soft Earth suspensions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Mohammad Nabizadeh & Safa Jamali, 2021. "Life and death of colloidal bonds control the rate-dependent rheology of gels," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:411:y:2001:i:6839:d:10.1038_35081021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.