IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7797.html
   My bibliography  Save this article

Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays

Author

Listed:
  • M. G. Kibria

    (McGill University)

  • F. A. Chowdhury

    (McGill University)

  • S. Zhao

    (McGill University)

  • B. AlOtaibi

    (McGill University)

  • M. L. Trudeau

    (Science des Matériaux, IREQ, Hydro-Québec)

  • H. Guo

    (Centre for the Physics of Materials, McGill University)

  • Z. Mi

    (McGill University)

Abstract

Solar water splitting for hydrogen generation can be a potential source of renewable energy for the future. Here we show that efficient and stable stoichiometric dissociation of water into hydrogen and oxygen can be achieved under visible light by eradicating the potential barrier on nonpolar surfaces of indium gallium nitride nanowires through controlled p-type dopant incorporation. An apparent quantum efficiency of ∼12.3% is achieved for overall neutral (pH∼7.0) water splitting under visible light illumination (400–475 nm). Moreover, using a double-band p-type gallium nitride/indium gallium nitride nanowire heterostructure, we show a solar-to-hydrogen conversion efficiency of ∼1.8% under concentrated sunlight. The dominant effect of near-surface band structure in transforming the photocatalytic performance is elucidated. The stability and efficiency of this recyclable, wafer-level nanoscale metal-nitride photocatalyst in neutral water demonstrates their potential use for large-scale solar-fuel conversion.

Suggested Citation

  • M. G. Kibria & F. A. Chowdhury & S. Zhao & B. AlOtaibi & M. L. Trudeau & H. Guo & Z. Mi, 2015. "Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7797
    DOI: 10.1038/ncomms7797
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7797
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Menon, Sumithra Sivadas & Hafeez, Hafeez Yusuf & Gupta, Bhavana & Baskar, K. & Bhalerao, Gopal & Hussain, Shamima & Neppolian, Bernaurdshaw & Singh, Shubra, 2019. "ZnO:InN oxynitride: A novel and unconventional photocatalyst for efficient UV–visible light driven hydrogen evolution from water," Renewable Energy, Elsevier, vol. 141(C), pages 760-769.
    2. Ruiz-Aguirre, A. & Villachica-Llamosas, J.G. & Polo-López, M.I. & Cabrera-Reina, A. & Colón, G. & Peral, J. & Malato, S., 2022. "Assessment of pilot-plant scale solar photocatalytic hydrogen generation with multiple approaches: Valorization, water decontamination and disinfection," Energy, Elsevier, vol. 260(C).
    3. Xin Liu & Danhao Wang & Wei Chen & Yang Kang & Shi Fang & Yuanmin Luo & Dongyang Luo & Huabin Yu & Haochen Zhang & Kun Liang & Lan Fu & Boon S. Ooi & Sheng Liu & Haiding Sun, 2024. "Optoelectronic synapses with chemical-electric behaviors in gallium nitride semiconductors for biorealistic neuromorphic functionality," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Guo, Liejin & Chen, Yubin & Su, Jinzhan & Liu, Maochang & Liu, Ya, 2019. "Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow," Energy, Elsevier, vol. 172(C), pages 1079-1086.
    5. Zeng, Zilong & Jing, Dengwei & Guo, Liejin, 2021. "Efficient hydrogen production in a spotlight reactor with plate photocatalyst of TiO2/NiO heterojunction supported on nickel foam," Energy, Elsevier, vol. 228(C).
    6. Chatterjee, U. & Park, Ji-Hyeon & Um, Dae-Young & Lee, Cheul-Ro, 2017. "III-nitride nanowires for solar light harvesting: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1002-1015.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.