IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57008-0.html
   My bibliography  Save this article

TaTCP6 is required for efficient and balanced utilization of nitrate and phosphorus in wheat

Author

Listed:
  • Bin Liu

    (China Agricultural University)

  • Weiya Xu

    (China Agricultural University)

  • Yanxiao Niu

    (China Agricultural University)

  • Qiuyuan Li

    (China Agricultural University)

  • Beilu Cao

    (China Agricultural University)

  • Jingyi Qi

    (China Agricultural University)

  • Yidi Zhao

    (China Agricultural University)

  • Yilan Zhou

    (China Agricultural University)

  • Long Song

    (China Agricultural University)

  • Dongkai Cui

    (Northwest A&F University)

  • Zhenshan Liu

    (Northwest A&F University)

  • Mingming Xin

    (China Agricultural University)

  • Yingyin Yao

    (China Agricultural University)

  • Mingshan You

    (China Agricultural University)

  • Zhongfu Ni

    (China Agricultural University)

  • Qixin Sun

    (China Agricultural University)

  • Jiewen Xing

    (China Agricultural University)

Abstract

High crop yields require adequate nutrients, particularly nitrate (N) and phosphorus (P). Identifying regulators for efficient N-P utilization is critical in wheat. To explore N-P interactions, we analyze root transcriptomes under varying N-P supplies and identify TaTCP6 as a potential regulator. Nitrate-stimulated TaTCP6 directly triggers the expression of genes related to nitrogen utilization. TaTCP6 competes with TaSPX1/4 for the release of TaPHR2, and also interacts with TaPHR2 to enhance the transactivation capacity of downstream genes. Thus, through the dual roles of TaTCP6, the TCP6-SPX-PHR2 module activates the expression of phosphorus starvation response (PSR) genes. Inhibiting TaTCP6 reduces N and P absorption, negatively impacting yield, while overexpressing TaTCP6 increases grain yield. Notably, overexpression of TaSPX1 suppresses nitrogen utilization genes, especially under low phosphorus conditions. In conclusion, our findings highlight the role of TaTCP6 in coordinating N and P utilization and propose a strategy to reduce fertilizer inputs for sustainable agriculture.

Suggested Citation

  • Bin Liu & Weiya Xu & Yanxiao Niu & Qiuyuan Li & Beilu Cao & Jingyi Qi & Yidi Zhao & Yilan Zhou & Long Song & Dongkai Cui & Zhenshan Liu & Mingming Xin & Yingyin Yao & Mingshan You & Zhongfu Ni & Qixin, 2025. "TaTCP6 is required for efficient and balanced utilization of nitrate and phosphorus in wheat," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57008-0
    DOI: 10.1038/s41467-025-57008-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57008-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57008-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kun-hsiang Liu & Yajie Niu & Mineko Konishi & Yue Wu & Hao Du & Hoo Sun Chung & Lei Li & Marie Boudsocq & Matthew McCormack & Shugo Maekawa & Tetsuya Ishida & Chao Zhang & Kevan Shokat & Shuichi Yanag, 2017. "Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks," Nature, Nature, vol. 545(7654), pages 311-316, May.
    2. Shan Li & Yonghang Tian & Kun Wu & Yafeng Ye & Jianping Yu & Jianqing Zhang & Qian Liu & Mengyun Hu & Hui Li & Yiping Tong & Nicholas P. Harberd & Xiangdong Fu, 2018. "Modulating plant growth–metabolism coordination for sustainable agriculture," Nature, Nature, vol. 560(7720), pages 595-600, August.
    3. Yoshie Maeda & Mineko Konishi & Takatoshi Kiba & Yasuhito Sakuraba & Naoya Sawaki & Tomohiro Kurai & Yoshiaki Ueda & Hitoshi Sakakibara & Shuichi Yanagisawa, 2018. "A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    4. Debatosh Das & Michael Paries & Karen Hobecker & Michael Gigl & Corinna Dawid & Hon-Ming Lam & Jianhua Zhang & Moxian Chen & Caroline Gutjahr, 2022. "PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Long Song & Jie Liu & Beilu Cao & Bin Liu & Xiaoping Zhang & Zhaoyan Chen & Chaoqun Dong & Xiangqing Liu & Zhaoheng Zhang & Wenxi Wang & Lingling Chai & Jing Liu & Jun Zhu & Shubin Cui & Fei He & Huir, 2023. "Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat," Nature, Nature, vol. 617(7959), pages 118-124, May.
    6. Jinfei Zhang & Yuyi Zhang & Jingguang Chen & Mengfan Xu & Xinyu Guan & Cui Wu & Shunan Zhang & Hongye Qu & Jinfang Chu & Yifeng Xu & Mian Gu & Ying Liu & Guohua Xu, 2024. "Sugar transporter modulates nitrogen-determined tillering and yield formation in rice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Anna Medici & Amy Marshall-Colon & Elsa Ronzier & Wojciech Szponarski & Rongchen Wang & Alain Gojon & Nigel M. Crawford & Sandrine Ruffel & Gloria M. Coruzzi & Gabriel Krouk, 2015. "AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip," Nature Communications, Nature, vol. 6(1), pages 1-11, May.
    8. Yongqiang Liu & Hongru Wang & Zhimin Jiang & Wei Wang & Ruineng Xu & Qihui Wang & Zhihua Zhang & Aifu Li & Yan Liang & Shujun Ou & Xiujie Liu & Shouyun Cao & Hongning Tong & Yonghong Wang & Feng Zhou , 2021. "Genomic basis of geographical adaptation to soil nitrogen in rice," Nature, Nature, vol. 590(7847), pages 600-605, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyu Zhang & Zhe Ji & Wu Jiao & Chengbo Shen & Yaojun Qin & Yunzhi Huang & Menghan Huang & Shuming Kang & Xuan Liu & Shunqi Li & Zulong Mo & Ying Yu & Bingyu Jiang & Yanan Tian & Longfei Wang & Qingxi, 2025. "Natural variation of OsWRKY23 drives difference in nitrate use efficiency between indica and japonica rice," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Kei Hiruma & Seishiro Aoki & Junya Takino & Takeshi Higa & Yuniar Devi Utami & Akito Shiina & Masanori Okamoto & Masami Nakamura & Nanami Kawamura & Yoshihiro Ohmori & Ryohei Sugita & Keitaro Tanoi & , 2023. "A fungal sesquiterpene biosynthesis gene cluster critical for mutualist-pathogen transition in Colletotrichum tofieldiae," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Jieshun Lin & Yuda Purwana Roswanjaya & Wouter Kohlen & Jens Stougaard & Dugald Reid, 2021. "Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Han Yang & Yafei Li & Yiwei Cao & Wenqing Shi & En Xie & Na Mu & Guijie Du & Yi Shen & Ding Tang & Zhukuan Cheng, 2022. "Nitrogen nutrition contributes to plant fertility by affecting meiosis initiation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Shichen Li & Zhihui Sun & Qing Sang & Chao Qin & Lingping Kong & Xin Huang & Huan Liu & Tong Su & Haiyang Li & Milan He & Chao Fang & Lingshuang Wang & Shuangrong Liu & Bin Liu & Baohui Liu & Xiangdon, 2023. "Soybean reduced internode 1 determines internode length and improves grain yield at dense planting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Sandeep Gawdiya & Dinesh Kumar & Yashbir S. Shivay & Arti Bhatia & Shweta Mehrotra & Mandapelli Sharath Chandra & Anita Kumawat & Rajesh Kumar & Adam H. Price & Nandula Raghuram & Himanshu Pathak & Ma, 2023. "Field-Based Evaluation of Rice Genotypes for Enhanced Growth, Yield Attributes, Yield and Grain Yield Efficiency Index in Irrigated Lowlands of the Indo-Gangetic Plains," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    7. Pierre Gautrat & Sara Buti & Andrés Romanowski & Michiel Lammers & Sanne E. A. Matton & Guido Buijs & Ronald Pierik, 2024. "Phytochrome-dependent responsiveness to root-derived cytokinins enables coordinated elongation responses to combined light and nitrate cues," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Si Liu & Meijuan Chen & Ruidong Li & Wan-Xiang Li & Amit Gal-On & Zhenyu Jia & Shou-Wei Ding, 2022. "Identification of positive and negative regulators of antiviral RNA interference in Arabidopsis thaliana," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Debatosh Das & Kartikye Varshney & Satoshi Ogawa & Salar Torabi & Regine Hüttl & David C. Nelson & Caroline Gutjahr, 2025. "Ethylene promotes SMAX1 accumulation to inhibit arbuscular mycorrhiza symbiosis," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    10. Jingjing Chang & Ohana Y. A. Costa & Yu Sun & Jilin Wang & Lei Tian & Shaohua Shi & Enze Wang & Li Ji & Changji Wang & Yingnan Pang & Zongmu Yao & Libo Ye & Jianfeng Zhang & Hongping Chen & Yaohui Cai, 2025. "Domesticated rice alters the rhizosphere microbiome, reducing nitrogen fixation and increasing nitrous oxide emissions," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    11. Stacia Stetkiewicz & Jonathan Menary & Abhishek Nair & Mariana Rufino & Arnout R.H. Fischer & Marc Cornelissen & Remi Duchesne & Adrien Guichaoua & Petra Jorasch & Stéphane Lemarié & Amrit Nanda & Ral, 2023. "Crop improvements for future‐proofing European food systems: A focus‐group‐driven analysis of agricultural production stakeholder priorities and viewpoints," Post-Print hal-04047917, HAL.
    12. Xin Wang & Zhimin Qiu & Wenjun Zhu & Nan Wang & Mengyan Bai & Huaqin Kuang & Chenlin Cai & Xiangbin Zhong & Fanjiang Kong & Peitao Lü & Yuefeng Guan, 2023. "The NAC transcription factors SNAP1/2/3/4 are central regulators mediating high nitrogen responses in mature nodules of soybean," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Sanghwa Lee & Julia Showalter & Ling Zhang & Gaëlle Cassin-Ross & Hatem Rouached & Wolfgang Busch, 2024. "Nutrient levels control root growth responses to high ambient temperature in plants," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Jun Jie Yuan & Ya Nan Zhao & Su Hang Yu & Ying Sun & Gui Xin Li & Jing Ying Yan & Ji Ming Xu & Wo Na Ding & Moussa Benhamed & Rong Liang Qiu & Chong Wei Jin & Shao Jian Zheng & Zhong Jie Ding, 2024. "The Arabidopsis receptor-like kinase WAKL4 limits cadmium uptake via phosphorylation and degradation of NRAMP1 transporter," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Qiang Zhang & Shuangshuang Wang & Qiujin Xie & Yuanjun Xia & Lei Lu & Mingxing Wang & Gang Wang & Siyu Long & Yunfei Cai & Ling Xu & Ertao Wang & Yina Jiang, 2023. "Control of arbuscule development by a transcriptional negative feedback loop in Medicago," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Yajun Gou & Yueqin Heng & Wenyan Ding & Canhong Xu & Qiushuang Tan & Yajing Li & Yudong Fang & Xiaoqing Li & Degui Zhou & Xinyu Zhu & Mingyue Zhang & Rongjian Ye & Haiyang Wang & Rongxin Shen, 2024. "Natural variation in OsMYB8 confers diurnal floret opening time divergence between indica and japonica subspecies," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Yasuhito Sakuraba & Mailun Yang & Shuichi Yanagisawa, 2024. "HASTY-mediated miRNA dynamics modulate nitrogen starvation-induced leaf senescence in Arabidopsis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Liu, Caixia & Rubæk, Gitte H. & Liu, Fulai & Andersen, Mathias N., 2015. "Effect of partial root zone drying and deficit irrigation on nitrogen and phosphorus uptake in potato," Agricultural Water Management, Elsevier, vol. 159(C), pages 66-76.
    19. Malathy Palayam & Linyi Yan & Ugrappa Nagalakshmi & Amelia K. Gilio & David Cornu & François-Didier Boyer & Savithramma P. Dinesh-Kumar & Nitzan Shabek, 2024. "Structural insights into strigolactone catabolism by carboxylesterases reveal a conserved conformational regulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Liang, Shuoshuo & Li, Lu & An, Ping & Chen, Suying & Shao, Liwei & Zhang, Xiying, 2021. "Spatial soil water and nutrient distribution affecting the water productivity of winter wheat," Agricultural Water Management, Elsevier, vol. 256(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57008-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.