IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0205161.html
   My bibliography  Save this article

Why is the environment important for decision making? Local reservoir model for choice-based learning

Author

Listed:
  • Makoto Naruse
  • Eiji Yamamoto
  • Takashi Nakao
  • Takuma Akimoto
  • Hayato Saigo
  • Kazuya Okamura
  • Izumi Ojima
  • Georg Northoff
  • Hirokazu Hori

Abstract

Decision making based on behavioral and neural observations of living systems has been extensively studied in brain science, psychology, neuroeconomics, and other disciplines. Decision-making mechanisms have also been experimentally implemented in physical processes, such as single photons and chaotic lasers. The findings of these experiments suggest that there is a certain common basis in describing decision making, regardless of its physical realizations. In this study, we propose a local reservoir model to account for choice-based learning (CBL). CBL describes decision consistency as a phenomenon where making a certain decision increases the possibility of making that same decision again later. This phenomenon has been intensively investigated in neuroscience, psychology, and other related fields. Our proposed model is inspired by the viewpoint that a decision is affected by its local environment, which is referred to as a local reservoir. If the size of the local reservoir is large enough, consecutive decision making will not be affected by previous decisions, thus showing lower degrees of decision consistency in CBL. In contrast, if the size of the local reservoir decreases, a biased distribution occurs within it, which leads to higher degrees of decision consistency in CBL. In this study, an analytical approach for characterizing local reservoirs is presented, as well as several numerical demonstrations. Furthermore, a physical architecture for CBL based on single photons is discussed, and the effects of local reservoirs are numerically demonstrated. Decision consistency in human decision-making tasks and in recruiting empirical data is evaluated based on the local reservoir. This foundation based on a local reservoir offers further insights into the understanding and design of decision making.

Suggested Citation

  • Makoto Naruse & Eiji Yamamoto & Takashi Nakao & Takuma Akimoto & Hayato Saigo & Kazuya Okamura & Izumi Ojima & Georg Northoff & Hirokazu Hori, 2018. "Why is the environment important for decision making? Local reservoir model for choice-based learning," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-17, October.
  • Handle: RePEc:plo:pone00:0205161
    DOI: 10.1371/journal.pone.0205161
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205161
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0205161&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0205161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Koyo Nakamura & Hideaki Kawabata, 2013. "I Choose, Therefore I Like: Preference for Faces Induced by Arbitrary Choice," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    2. Nathaniel D. Daw & John P. O'Doherty & Peter Dayan & Ben Seymour & Raymond J. Dolan, 2006. "Cortical substrates for exploratory decisions in humans," Nature, Nature, vol. 441(7095), pages 876-879, June.
    3. Madoka Miyagi & Makoto Miyatani & Takashi Nakao, 2017. "Relation between choice-induced preference change and depression," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-14, June.
    4. Thomas F. Flood & Shinya Iguchi & Michael Gorczyca & Benjamin White & Kei Ito & Motojiro Yoshihara, 2013. "A single pair of interneurons commands the Drosophila feeding motor program," Nature, Nature, vol. 499(7456), pages 83-87, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    2. Carlos Alós-Ferrer & Georg D. Granic, 2023. "Does choice change preferences? An incentivized test of the mere choice effect," Experimental Economics, Springer;Economic Science Association, vol. 26(3), pages 499-521, July.
    3. Shi, Yuwei & Herniman, John, 2023. "The role of expectation in innovation evolution: Exploring hype cycles," Technovation, Elsevier, vol. 119(C).
    4. Sashittal, Hemant C. & Sriramachandramurthy, Rajendran & Hodis, Monica, 2012. "Targeting college students on Facebook? How to stop wasting your money," Business Horizons, Elsevier, vol. 55(5), pages 495-507.
    5. Peter S. Riefer & Bradley C. Love, 2015. "Unfazed by Both the Bull and Bear: Strategic Exploration in Dynamic Environments," Games, MDPI, vol. 6(3), pages 1-11, August.
    6. Christina Fang & Daniel Levinthal, 2009. "Near-Term Liability of Exploitation: Exploration and Exploitation in Multistage Problems," Organization Science, INFORMS, vol. 20(3), pages 538-551, June.
    7. Hu, Yingyao & Kayaba, Yutaka & Shum, Matthew, 2013. "Nonparametric learning rules from bandit experiments: The eyes have it!," Games and Economic Behavior, Elsevier, vol. 81(C), pages 215-231.
    8. Jean Daunizeau & Hanneke E M den Ouden & Matthias Pessiglione & Stefan J Kiebel & Klaas E Stephan & Karl J Friston, 2010. "Observing the Observer (I): Meta-Bayesian Models of Learning and Decision-Making," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-10, December.
    9. Elyse H Norton & Stephen M Fleming & Nathaniel D Daw & Michael S Landy, 2017. "Suboptimal Criterion Learning in Static and Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-28, January.
    10. Ayaka Kato & Kenji Morita, 2016. "Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-41, October.
    11. Elise Payzan-LeNestour & Peter Bossaerts, 2011. "Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
    12. Pérez-Centeno, Victor, 2018. "Brain-driven entrepreneurship research: Expanded review and research agenda towards entrepreneurial enhancement," Working Papers 02/18, Institut für Mittelstandsforschung (IfM) Bonn.
    13. Oded Berger-Tal & Jonathan Nathan & Ehud Meron & David Saltz, 2014. "The Exploration-Exploitation Dilemma: A Multidisciplinary Framework," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    14. Ian Krajbich & Todd Hare & Björn Bartling & Yosuke Morishima & Ernst Fehr, 2015. "A Common Mechanism Underlying Food Choice and Social Decisions," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-24, October.
    15. Maime Guan & Ryan Stokes & Joachim Vandekerckhove & Michael D. Lee, 2020. "A cognitive modeling analysis of risk in sequential choice tasks}," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(5), pages 823-850, September.
    16. Marco Colosio & Anna Shestakova & Vadim Nikulin & Anna Shpektor & Vasily Klucharev, 2015. "Neural Mechanisms of the Postdecisional Spreading-of-Alternatives Effect: Eeg Study," HSE Working papers WP BRP 50/PSY/2015, National Research University Higher School of Economics.
    17. Kiyohito Iigaya & Sanghyun Yi & Iman A. Wahle & Sandy Tanwisuth & Logan Cross & John P. O’Doherty, 2023. "Neural mechanisms underlying the hierarchical construction of perceived aesthetic value," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Matthew R Nassar & Joshua I Gold, 2013. "A Healthy Fear of the Unknown: Perspectives on the Interpretation of Parameter Fits from Computational Models in Neuroscience," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-6, April.
    19. Maël Lebreton & Karin Bacily & Stefano Palminteri & Jan B Engelmann, 2019. "Contextual influence on confidence judgments in human reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
    20. repec:cup:judgdm:v:17:y:2022:i:4:p:691-719 is not listed on IDEAS
    21. Ahmed H. Alsharif & Nor Zafir Md Salleh & Rohaizat Baharun & Alharthi Rami Hashem E & Aida Azlina Mansor & Javed Ali & Alhamzah F. Abbas, 2021. "Neuroimaging Techniques in Advertising Research: Main Applications, Development, and Brain Regions and Processes," Sustainability, MDPI, vol. 13(11), pages 1-25, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0205161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.