Surface reaction for efficient and stable inverted perovskite solar cells
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-022-05268-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Benjamin M. Gallant & Philippe Holzhey & Joel A. Smith & Saqlain Choudhary & Karim A. Elmestekawy & Pietro Caprioglio & Igal Levine & Alexandra A. Sheader & Esther Y-H. Hung & Fengning Yang & Daniel T, 2024. "A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Cheng Gong & Haiyun Li & Zhiyuan Xu & Yuheng Li & Huaxin Wang & Qixin Zhuang & Awen Wang & Zhijun Li & Zhihao Guo & Cong Zhang & Baiqian Wang & Xiong Li & Zhigang Zang, 2024. "Efficient and stable inverted perovskite solar cells enabled by homogenized PCBM with enhanced electron transport," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Soonil Hong & Jinho Lee, 2022. "Recent Advances and Challenges toward Efficient Perovskite/Organic Integrated Solar Cells," Energies, MDPI, vol. 16(1), pages 1-19, December.
- Pengju Shi & Bin Ding & Donger Jin & Muratcan Oner & Xu Zhang & Yuan Tian & Yahui Li & Ke Zhao & Zengyi Sun & Jiazhe Xu & Shaochen Zhang & Runchen Lai & Lingyu Xiao & Chenyue Wang & Caner Değer & Liuw, 2024. "Micro-homogeneity of lateral energy landscapes governs the performance in perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
- Shuchen Tan & Chongwen Li & Cheng Peng & Wenjian Yan & Hongkai Bu & Haokun Jiang & Fang Yue & Linbao Zhang & Hongtao Gao & Zhongmin Zhou, 2024. "Sustainable thermal regulation improves stability and efficiency in all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Li, Bowei & Jayawardena, K.D. G. Imalka & Zhang, Jing & Bandara, Rajapakshe Mudiyanselage Indrachapa & Liu, Xueping & Bi, Jingxin & Silva, Shashini M. & Liu, Dongtao & Underwood, Cameron C.L. & Xiang,, 2024. "Stability of formamidinium tin triiodide-based inverted perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:611:y:2022:i:7935:d:10.1038_s41586-022-05268-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.