Author
Listed:
- Zhiqi Li
(Linköping University
The Hong Kong Polytechnic University
Jilin University)
- Qi Wei
(The Hong Kong Polytechnic University)
- Yu Wang
(Linköping University)
- Cong Tao
(Northwestern Polytechnical University)
- Yatao Zou
(Northwestern Polytechnical University)
- Xiaowang Liu
(Northwestern Polytechnical University)
- Ziwei Li
(Hunan University)
- Zhongbin Wu
(Northwestern Polytechnical University)
- Mingjie Li
(The Hong Kong Polytechnic University)
- Wenbin Guo
(Jilin University)
- Gang Li
(The Hong Kong Polytechnic University)
- Weidong Xu
(Northwestern Polytechnical University
Henan University)
- Feng Gao
(Linköping University)
Abstract
One of the key advantages of perovskite light-emitting diodes (PeLEDs) is their potential to achieve high performance at much higher current densities compared to conventional solution-processed emitters. However, state-of-the-art PeLEDs have not yet reached this potential, often suffering from severe current-efficiency roll-off under intensive electrical excitations. Here, we demonstrate bright PeLEDs, with a peak radiance of 2409 W sr−1 m−2 and negligible current-efficiency roll-off, maintaining high external quantum efficiency over 20% even at current densities as high as 2270 mA cm−2. This significant improvement is achieved through the incorporation of electron-withdrawing trifluoroacetate anions into three-dimensional perovskite emitters, resulting in retarded Auger recombination due to a decoupled electron-hole wavefunction. Trifluoroacetate anions can additionally alter the crystallization dynamics and inhibit halide migration, facilitating charge injection balance and improving the tolerance of perovskites under high voltages. Our findings shed light on a promising future for perovskite emitters in high-power light-emitting applications, including laser diodes.
Suggested Citation
Zhiqi Li & Qi Wei & Yu Wang & Cong Tao & Yatao Zou & Xiaowang Liu & Ziwei Li & Zhongbin Wu & Mingjie Li & Wenbin Guo & Gang Li & Weidong Xu & Feng Gao, 2025.
"Highly bright perovskite light-emitting diodes enabled by retarded Auger recombination,"
Nature Communications, Nature, vol. 16(1), pages 1-9, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56001-x
DOI: 10.1038/s41467-025-56001-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56001-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.