IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55765-y.html
   My bibliography  Save this article

Short-term warming supports mineral-associated carbon accrual in abandoned croplands

Author

Listed:
  • Zhenrui Zhang

    (Beijing Normal University)

  • Hui Gao

    (Beijing Normal University)

  • Xiaoxia Gao

    (Beijing Forestry University)

  • Shurui Huang

    (Beijing Normal University)

  • Shuli Niu

    (Chinese Academy of Sciences)

  • Emanuele Lugato

    (Joint Research Centre (JRC))

  • Xinghui Xia

    (Beijing Normal University)

Abstract

Effective soil organic carbon (SOC) management can mitigate the impact of climate warming. However, the response of different SOC fractions to warming in abandoned croplands remains unclear. Here, categorizing SOC into particulate and mineral-associated organic carbon (POC and MAOC) with physical fractionation, we investigate the responses of POC and MAOC content and temperature sensitivity (Q10) to warming through a 3-year in situ warming experiment (+1.6 °C) in abandoned croplands across 12 sites in China (latitude: 22.33–46.58°N). Our results indicate that POC content remains unchanged while MAOC content significantly increases under warming. POC and MAOC content changes are mainly influenced by root biomass and microbial necromass carbon changes, respectively. The Q10 of MAOC is significantly lower than that of POC regardless of the warming or control treatment, suggesting that MAOC represents the most persistent and least vulnerable carbon fraction within SOC. Collectively, the sequestration of stable soil carbon can be enhanced in abandoned croplands under short-term warming.

Suggested Citation

  • Zhenrui Zhang & Hui Gao & Xiaoxia Gao & Shurui Huang & Shuli Niu & Emanuele Lugato & Xinghui Xia, 2025. "Short-term warming supports mineral-associated carbon accrual in abandoned croplands," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55765-y
    DOI: 10.1038/s41467-024-55765-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55765-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55765-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jordon D. Hemingway & Daniel H. Rothman & Katherine E. Grant & Sarah Z. Rosengard & Timothy I. Eglinton & Louis A. Derry & Valier V. Galy, 2019. "Mineral protection regulates long-term global preservation of natural organic carbon," Nature, Nature, vol. 570(7760), pages 228-231, June.
    2. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6813), pages 750-750, December.
    3. Jing Tian & Jennifer A. J. Dungait & Ruixing Hou & Ye Deng & Iain P. Hartley & Yunfeng Yang & Yakov Kuzyakov & Fusuo Zhang & M. Francesca Cotrufo & Jizhong Zhou, 2024. "Microbially mediated mechanisms underlie soil carbon accrual by conservation agriculture under decade-long warming," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6809), pages 184-187, November.
    5. Qiming Zheng & Tim Ha & Alexander V. Prishchepov & Yiwen Zeng & He Yin & Lian Pin Koh, 2023. "The neglected role of abandoned cropland in supporting both food security and climate change mitigation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Futing Liu & Shuqi Qin & Kai Fang & Leiyi Chen & Yunfeng Peng & Pete Smith & Yuanhe Yang, 2022. "Divergent changes in particulate and mineral-associated organic carbon upon permafrost thaw," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Katerina Georgiou & Robert B. Jackson & Olga Vindušková & Rose Z. Abramoff & Anders Ahlström & Wenting Feng & Jennifer W. Harden & Adam F. A. Pellegrini & H. Wayne Polley & Jennifer L. Soong & William, 2022. "Global stocks and capacity of mineral-associated soil organic carbon," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Jie Hu & Luyao Kang & Ziliang Li & Xuehui Feng & Caifan Liang & Zan Wu & Wei Zhou & Xuning Liu & Yuanhe Yang & Leiyi Chen, 2023. "Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Changming Fang & Pete Smith & John B. Moncrieff & Jo U. Smith, 2005. "Similar response of labile and resistant soil organic matter pools to changes in temperature," Nature, Nature, vol. 433(7021), pages 57-59, January.
    10. Tian Ma & Shanshan Zhu & Zhiheng Wang & Dima Chen & Guohua Dai & Bowei Feng & Xiangyan Su & Huifeng Hu & Kaihui Li & Wenxuan Han & Chao Liang & Yongfei Bai & Xiaojuan Feng, 2018. "Divergent accumulation of microbial necromass and plant lignin components in grassland soils," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    11. Changming Fang & Pete Smith & John B. Moncrieff & Jo U. Smith, 2005. "Erratum: Similar response of labile and resistant soil organic matter pools to changes in temperature," Nature, Nature, vol. 436(7052), pages 881-881, August.
    12. Gerrit Angst & Kevin E. Mueller & Michael J. Castellano & Cordula Vogel & Martin Wiesmeier & Carsten W. Mueller, 2023. "Unlocking complex soil systems as carbon sinks: multi-pool management as the key," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Chunmei Chen & Steven J. Hall & Elizabeth Coward & Aaron Thompson, 2020. "Iron-mediated organic matter decomposition in humid soils can counteract protection," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minglong Liu & Shilu Zheng & Elise Pendall & Pete Smith & Jiajia Liu & Jinquan Li & Changming Fang & Bo Li & Ming Nie, 2025. "Unprotected carbon dominates decadal soil carbon increase," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    2. Nan Jia & Lei Li & Hui Guo & Mingyu Xie, 2024. "Important role of Fe oxides in global soil carbon stabilization and stocks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Guopeng Liang & John Stark & Bonnie Grace Waring, 2023. "Mineral reactivity determines root effects on soil organic carbon," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Hongru Sun & Guangsheng Zhou & Zhenzhu Xu & Yuhui Wang & Xiaodi Liu & Hongying Yu & Quanhui Ma & Bingrui Jia, 2020. "Temperature sensitivity increases with decreasing soil carbon quality in forest ecosystems across northeast China," Climatic Change, Springer, vol. 160(3), pages 373-384, June.
    5. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    6. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    7. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    8. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    9. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.
    10. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    11. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    12. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Khizar Abid & Andrés Felipe Baena Velásquez & Catalin Teodoriu, 2024. "Comprehensive Comparative Review of the Cement Experimental Testing Under CO 2 Conditions," Energies, MDPI, vol. 17(23), pages 1-57, November.
    14. U. Persson & Christian Azar, 2007. "Tropical deforestation in a future international climate policy regime—lessons from the Brazilian Amazon," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(7), pages 1277-1304, August.
    15. Wang, Weilong & Xiao, Jing & Wei, Xiaolan & Ding, Jing & Wang, Xiaoxing & Song, Chunshan, 2014. "Development of a new clay supported polyethylenimine composite for CO2 capture," Applied Energy, Elsevier, vol. 113(C), pages 334-341.
    16. Arce, G.L.A.F. & Carvalho, J.A. & Nascimento, L.F.C., 2014. "A time series sequestration and storage model of atmospheric carbon dioxide," Ecological Modelling, Elsevier, vol. 272(C), pages 59-67.
    17. Sato, Hisashi & Itoh, Akihiko & Kohyama, Takashi, 2007. "SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach," Ecological Modelling, Elsevier, vol. 200(3), pages 279-307.
    18. Fouad El Ouardighi & Hassan Benchekroun & Dieter Grass, 2016. "Self-regenerating environmental absorption efficiency and the $$\varvec{ soylent~green~scenario}$$ s o y l e n t g r e e n s c e n a r i o," Annals of Operations Research, Springer, vol. 238(1), pages 179-198, March.
    19. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    20. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55765-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.