IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v433y2005i7021d10.1038_nature03138.html
   My bibliography  Save this article

Similar response of labile and resistant soil organic matter pools to changes in temperature

Author

Listed:
  • Changming Fang

    (School of Biological Sciences, University of Aberdeen)

  • Pete Smith

    (School of Biological Sciences, University of Aberdeen)

  • John B. Moncrieff

    (Ecology and Resource Management, School of GeoSciences, The University of Edinburgh)

  • Jo U. Smith

    (School of Biological Sciences, University of Aberdeen)

Abstract

Soil carbon: all for one The effect of temperature change on decomposition of soil organic matter is an important factor when considering the effect of global warming on soil-stored carbon. It is commonly assumed that soil carbon exists as two fractions, a ‘labile’ fraction sensitive to temperature variation and a ‘resistant’ fraction insensitive to temperature. This implies that higher losses of carbon would occur from soils in forest and tundra, which have the largest store of labile organic matter, and that the effect of warming on soil organic matter decomposition may decline with time. Not so, according to an experiment on samples of forest soil. The temperature sensitivity of decomposition was not affected by soil organic matter composition, suggesting that all soil organic matter will respond similarly to global warming.

Suggested Citation

  • Changming Fang & Pete Smith & John B. Moncrieff & Jo U. Smith, 2005. "Similar response of labile and resistant soil organic matter pools to changes in temperature," Nature, Nature, vol. 433(7021), pages 57-59, January.
  • Handle: RePEc:nat:nature:v:433:y:2005:i:7021:d:10.1038_nature03138
    DOI: 10.1038/nature03138
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03138
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Yang & Dongsheng Chu & Haibo Hu & Wenbin Deng & Jianyu Chen & Shaojun Guo, 2024. "Effects of Land-Use Type and Salinity on Soil Carbon Mineralization in Coastal Areas of Northern Jiangsu Province," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    2. Tuomi, Mikko & Vanhala, Pekka & Karhu, Kristiina & Fritze, Hannu & Liski, Jari, 2008. "Heterotrophic soil respiration—Comparison of different models describing its temperature dependence," Ecological Modelling, Elsevier, vol. 211(1), pages 182-190.
    3. Braakhekke, Maarten C. & Beer, Christian & Hoosbeek, Marcel R. & Reichstein, Markus & Kruijt, Bart & Schrumpf, Marion & Kabat, Pavel, 2011. "SOMPROF: A vertically explicit soil organic matter model," Ecological Modelling, Elsevier, vol. 222(10), pages 1712-1730.
    4. Michael S. O’Donnell & Daniel J. Manier, 2022. "Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems," Land, MDPI, vol. 11(10), pages 1-37, October.
    5. Ouyang, Zan & Tian, Juncang & Yan, Xinfang & Shen, Hui, 2020. "Effects of different concentrations of dissolved oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce," Agricultural Water Management, Elsevier, vol. 228(C).
    6. Kuosmanen, Natalia, 2014. "Estimating stocks and flows of nitrogen: Application of dynamic nutrient balance to European agriculture," Ecological Economics, Elsevier, vol. 108(C), pages 68-78.
    7. Meng Wei & Aijun Zhang & Zhonghou Tang & Peng Zhao & Hong Pan & Hui Wang & Quangang Yang & Yanhong Lou & Yuping Zhuge, 2020. "Active carbon pool-size is enhanced by long-term manure application," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(11), pages 598-605.
    8. Zhang, Kefeng & Greenwood, Duncan J. & Spracklen, William P. & Rahn, Clive R. & Hammond, John P. & White, Philip J. & Burns, Ian G., 2010. "A universal agro-hydrological model for water and nitrogen cycles in the soil-crop system SMCR_N: Critical update and further validation," Agricultural Water Management, Elsevier, vol. 97(10), pages 1411-1422, October.
    9. Du Changwen & Zhou Jianmin & Keith W Goyne, 2012. "Organic and Inorganic Carbon in Paddy Soil as Evaluated by Mid-Infrared Photoacoustic Spectroscopy," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-6, August.
    10. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    11. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Post, Joachim & Krysanova, Valentina & Suckow, Felicitas & Mirschel, Wilfried & Rogasik, Jutta & Merbach, Ines, 2007. "Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins," Ecological Modelling, Elsevier, vol. 206(1), pages 93-109.
    13. Hongru Sun & Guangsheng Zhou & Zhenzhu Xu & Yuhui Wang & Xiaodi Liu & Hongying Yu & Quanhui Ma & Bingrui Jia, 2020. "Temperature sensitivity increases with decreasing soil carbon quality in forest ecosystems across northeast China," Climatic Change, Springer, vol. 160(3), pages 373-384, June.
    14. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    15. Ang Hu & Kyoung-Soon Jang & Andrew J. Tanentzap & Wenqian Zhao & Jay T. Lennon & Jinfu Liu & Mingjia Li & James Stegen & Mira Choi & Yahai Lu & Xiaojuan Feng & Jianjun Wang, 2024. "Thermal responses of dissolved organic matter under global change," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:433:y:2005:i:7021:d:10.1038_nature03138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.