IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39432-2.html
   My bibliography  Save this article

Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes

Author

Listed:
  • Jie Hu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Luyao Kang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ziliang Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xuehui Feng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Caifan Liang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zan Wu

    (Chinese Academy of Sciences)

  • Wei Zhou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xuning Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuanhe Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Leiyi Chen

    (Chinese Academy of Sciences)

Abstract

Photochemical and biological degradation of dissolved organic carbon (DOC) and their interactions jointly contribute to the carbon dioxide released from surface waters in permafrost regions. However, the mechanisms that govern the coupled photochemical and biological degradation of DOC are still poorly understood in thermokarst lakes. Here, by combining Fourier transform ion cyclotron resonance mass spectrometry and microbial high-throughput sequencing, we conducted a sunlight and microbial degradation experiment using water samples collected from 10 thermokarst lakes along a 1100-km permafrost transect. We demonstrate that the enhancement of sunlight on DOC biodegradation is not associated with the low molecular weight aliphatics produced by sunlight, but driven by the photo-produced aromatics. This aromatic compound-driven acceleration of biodegradation may be attributed to the potential high abilities of the microbes to decompose complex compounds in thermokarst lakes. These findings highlight the importance of aromatics in regulating the sunlight effects on DOC biodegradation in permafrost-affected lakes.

Suggested Citation

  • Jie Hu & Luyao Kang & Ziliang Li & Xuehui Feng & Caifan Liang & Zan Wu & Wei Zhou & Xuning Liu & Yuanhe Yang & Leiyi Chen, 2023. "Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39432-2
    DOI: 10.1038/s41467-023-39432-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39432-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39432-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katey Walter Anthony & Thomas Schneider von Deimling & Ingmar Nitze & Steve Frolking & Abraham Emond & Ronald Daanen & Peter Anthony & Prajna Lindgren & Benjamin Jones & Guido Grosse, 2018. "21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Anne M. Kellerman & Thorsten Dittmar & Dolly N. Kothawala & Lars J. Tranvik, 2014. "Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    3. D. Olefeldt & S. Goswami & G. Grosse & D. Hayes & G. Hugelius & P. Kuhry & A. D. McGuire & V. E. Romanovsky & A.B.K. Sannel & E.A.G. Schuur & M. R. Turetsky, 2016. "Circumpolar distribution and carbon storage of thermokarst landscapes," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    4. Jean-François Lapierre & François Guillemette & Martin Berggren & Paul A. del Giorgio, 2013. "Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    5. Collin P. Ward & Sarah G. Nalven & Byron C. Crump & George W. Kling & Rose M. Cory, 2017. "Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    6. Felipe Bastida & Carlos García & Noah Fierer & David J. Eldridge & Matthew A. Bowker & Sebastián Abades & Fernando D. Alfaro & Asmeret Asefaw Berhe & Nick A. Cutler & Antonio Gallardo & Laura García-V, 2019. "Global ecological predictors of the soil priming effect," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    7. S. Serikova & O. S. Pokrovsky & H. Laudon & I. V. Krickov & A. G. Lim & R. M. Manasypov & J. Karlsson, 2019. "High carbon emissions from thermokarst lakes of Western Siberia," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    8. Christina Schädel & Martin K.-F. Bader & Edward A. G. Schuur & Christina Biasi & Rosvel Bracho & Petr Čapek & Sarah De Baets & Kateřina Diáková & Jessica Ernakovich & Cristian Estop-Aragones & David E, 2016. "Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils," Nature Climate Change, Nature, vol. 6(10), pages 950-953, October.
    9. Maren Zark & Thorsten Dittmar, 2018. "Universal molecular structures in natural dissolved organic matter," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guibiao Yang & Zhihu Zheng & Benjamin W. Abbott & David Olefeldt & Christian Knoblauch & Yutong Song & Luyao Kang & Shuqi Qin & Yunfeng Peng & Yuanhe Yang, 2023. "Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Núria Catalán & Carina Rofner & Charles Verpoorter & María Teresa Pérez & Thorsten Dittmar & Lars Tranvik & Ruben Sommaruga & Hannes Peter, 2024. "Treeline displacement may affect lake dissolved organic matter processing at high latitudes and altitudes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Yating Chen & Xiao Cheng & Aobo Liu & Qingfeng Chen & Chengxin Wang, 2023. "Tracking lake drainage events and drained lake basin vegetation dynamics across the Arctic," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Kai Ma & Yueyue Li & Wen Song & Jiayin Zhou & Xia Liu & Mengqi Wang & Xiaofan Gong & Linlin Wang & Qichao Tu, 2024. "Disentangling drivers of mudflat intertidal DOM chemodiversity using ecological models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Erika C. Freeman & Erik J. S. Emilson & Thorsten Dittmar & Lucas P. P. Braga & Caroline E. Emilson & Tobias Goldhammer & Christine Martineau & Gabriel Singer & Andrew J. Tanentzap, 2024. "Universal microbial reworking of dissolved organic matter along environmental gradients," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Jens Strauss & Christina Biasi & Tina Sanders & Benjamin W. Abbott & Thomas Schneider Deimling & Carolina Voigt & Matthias Winkel & Maija E. Marushchak & Dan Kou & Matthias Fuchs & Marcus A. Horn & Lo, 2022. "A globally relevant stock of soil nitrogen in the Yedoma permafrost domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Juan Pedro Rodríguez-López & Chihua Wu & Tatiana A. Vishnivetskaya & Julian B. Murton & Wenqiang Tang & Chao Ma, 2022. "Permafrost in the Cretaceous supergreenhouse," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Jie Ma & Dongyan Pei & Xuhan Zhang & Qiuying Lai & Fei He & Chao Fu & Jianhui Liu & Weixin Li, 2022. "The Distribution of DOM in the Wanggang River Flowing into the East China Sea," IJERPH, MDPI, vol. 19(15), pages 1-12, July.
    9. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Hui Zhang & Minna Väliranta & Graeme T. Swindles & Marco A. Aquino-López & Donal Mullan & Ning Tan & Matthew Amesbury & Kirill V. Babeshko & Kunshan Bao & Anatoly Bobrov & Viktor Chernyshov & Marissa , 2022. "Recent climate change has driven divergent hydrological shifts in high-latitude peatlands," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Dong Liu & Kun Shi & Peng Chen & Nuoxiao Yan & Lishan Ran & Tiit Kutser & Andrew N. Tyler & Evangelos Spyrakos & R. Iestyn Woolway & Yunlin Zhang & Hongtao Duan, 2024. "Substantial increase of organic carbon storage in Chinese lakes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Xuanyu Tao & Zhifeng Yang & Jiajie Feng & Siyang Jian & Yunfeng Yang & Colin T. Bates & Gangsheng Wang & Xue Guo & Daliang Ning & Megan L. Kempher & Xiao Jun A. Liu & Yang Ouyang & Shun Han & Linwei W, 2024. "Experimental warming accelerates positive soil priming in a temperate grassland ecosystem," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Prerna Joshi & N. Siva Siddaiah, 2021. "Carbon dioxide dynamics of Bhalswa Lake: a human-impacted urban wetland of Delhi, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18116-18142, December.
    14. K. M. Walter Anthony & P. Anthony & N. Hasson & C. Edgar & O. Sivan & E. Eliani-Russak & O. Bergman & B. J. Minsley & S. R. James & N. J. Pastick & A. Kholodov & S. Zimov & E. Euskirchen & M. S. Bret-, 2024. "Upland Yedoma taliks are an unpredicted source of atmospheric methane," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Shaoda Liu, 2019. "Carbon Dioxide Emission from Streams and Rivers as an Integrative Part of Terrestrial Respiration," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 19(2), pages 50-54, May.
    17. Liu, Zhenhai & Chen, Bin & Wang, Shaoqiang & Wang, Qinyi & Chen, Jinghua & Shi, Weibo & Wang, Xiaobo & Liu, Yuanyuan & Tu, Yongkai & Huang, Mei & Wang, Junbang & Wang, Zhaosheng & Li, Hui & Zhu, Tongt, 2021. "The impacts of vegetation on the soil surface freezing-thawing processes at permafrost southern edge simulated by an improved process-based ecosystem model," Ecological Modelling, Elsevier, vol. 456(C).
    18. Qian Fang & Anhuai Lu & Hanlie Hong & Yakov Kuzyakov & Thomas J. Algeo & Lulu Zhao & Yaniv Olshansky & Bryan Moravec & Danielle M. Barrientes & Jon Chorover, 2023. "Mineral weathering is linked to microbial priming in the critical zone," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Eleanor A. Sheridan & Jérémy A. Fonvielle & Samuel Cottingham & Yi Zhang & Thorsten Dittmar & David C. Aldridge & Andrew J. Tanentzap, 2022. "Plastic pollution fosters more microbial growth in lakes than natural organic matter," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39432-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.