IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16071-5.html
   My bibliography  Save this article

Iron-mediated organic matter decomposition in humid soils can counteract protection

Author

Listed:
  • Chunmei Chen

    (Tianjin University)

  • Steven J. Hall

    (Iowa State University)

  • Elizabeth Coward

    (University of Delaware)

  • Aaron Thompson

    (University of Georgia)

Abstract

Soil organic matter (SOM) is correlated with reactive iron (Fe) in humid soils, but Fe also promotes SOM decomposition when oxygen (O2) becomes limited. Here we quantify Fe-mediated OM protection vs. decomposition by adding 13C dissolved organic matter (DOM) and 57FeII to soil slurries incubated under static or fluctuating O2. We find Fe uniformly protects OM only under static oxic conditions, and only when Fe and DOM are added together: de novo reactive FeIII phases suppress DOM and SOM mineralization by 35 and 47%, respectively. Conversely, adding 57FeII alone increases SOM mineralization by 8% following oxidation to 57FeIII. Under O2 limitation, de novo reactive 57FeIII phases are preferentially reduced, increasing anaerobic mineralization of DOM and SOM by 74% and 32‒41%, respectively. Periodic O2 limitation is common in humid soils, so Fe does not intrinsically protect OM; rather reactive Fe phases require their own physiochemical protection to contribute to OM persistence.

Suggested Citation

  • Chunmei Chen & Steven J. Hall & Elizabeth Coward & Aaron Thompson, 2020. "Iron-mediated organic matter decomposition in humid soils can counteract protection," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16071-5
    DOI: 10.1038/s41467-020-16071-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16071-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16071-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjuan Huang & Wenjuan Yu & Bo Yi & Erik Raman & Jihoon Yang & Kenneth E. Hammel & Vitaliy I. Timokhin & Chaoqun Lu & Adina Howe & Samantha R. Weintraub-Leff & Steven J. Hall, 2023. "Contrasting geochemical and fungal controls on decomposition of lignin and soil carbon at continental scale," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jannik Martens & Carsten W. Mueller & Prachi Joshi & Christoph Rosinger & Markus Maisch & Andreas Kappler & Michael Bonkowski & Georg Schwamborn & Lutz Schirrmeister & Janet Rethemeyer, 2023. "Stabilization of mineral-associated organic carbon in Pleistocene permafrost," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Guopeng Liang & John Stark & Bonnie Grace Waring, 2023. "Mineral reactivity determines root effects on soil organic carbon," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yunru Chen & Liang Dong & Weikang Sui & Mingyang Niu & Xingqian Cui & Kai-Uwe Hinrichs & Fengping Wang, 2024. "Cycling and persistence of iron-bound organic carbon in subseafloor sediments," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jade J. Basinski & Sharon E. Bone & Annaleise R. Klein & Wiriya Thongsomboon & Valerie Mitchell & John T. Shukle & Gregory K. Druschel & Aaron Thompson & Ludmilla Aristilde, 2024. "Unraveling iron oxides as abiotic catalysts of organic phosphorus recycling in soil and sediment matrices," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Jared L. Wilmoth, 2021. "Redox Heterogeneity Entangles Soil and Climate Interactions," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    7. Futing Liu & Shuqi Qin & Kai Fang & Leiyi Chen & Yunfeng Peng & Pete Smith & Yuanhe Yang, 2022. "Divergent changes in particulate and mineral-associated organic carbon upon permafrost thaw," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Yanting Zhang & Man Tong & Yuxi Lu & Fengyi Zhao & Peng Zhang & Zhenchen Wan & Ping Li & Songhu Yuan & Yanxin Wang & Andreas Kappler, 2024. "Directional long-distance electron transfer from reduced to oxidized zones in the subsurface," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16071-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.