IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-14040-1.html
   My bibliography  Save this article

Structural basis for adhesion G protein-coupled receptor Gpr126 function

Author

Listed:
  • Katherine Leon

    (The University of Chicago
    The University of Chicago)

  • Rebecca L. Cunningham

    (Washington University School of Medicine)

  • Joshua A. Riback

    (The University of Chicago
    The University of Chicago)

  • Ezra Feldman

    (The University of Chicago)

  • Jingxian Li

    (The University of Chicago
    The University of Chicago)

  • Tobin R. Sosnick

    (The University of Chicago
    The University of Chicago)

  • Minglei Zhao

    (The University of Chicago)

  • Kelly R. Monk

    (Washington University School of Medicine
    Vollum Institute, Oregon Health & Science University)

  • Demet Araç

    (The University of Chicago
    The University of Chicago)

Abstract

Many drugs target the extracellular regions (ECRs) of cell-surface receptors. The large and alternatively-spliced ECRs of adhesion G protein-coupled receptors (aGPCRs) have key functions in diverse biological processes including neurodevelopment, embryogenesis, and tumorigenesis. However, their structures and mechanisms of action remain unclear, hampering drug development. The aGPCR Gpr126/Adgrg6 regulates Schwann cell myelination, ear canal formation, and heart development; and GPR126 mutations cause myelination defects in human. Here, we determine the structure of the complete zebrafish Gpr126 ECR and reveal five domains including a previously unknown domain. Strikingly, the Gpr126 ECR adopts a closed conformation that is stabilized by an alternatively spliced linker and a conserved calcium-binding site. Alternative splicing regulates ECR conformation and receptor signaling, while mutagenesis of the calcium-binding site abolishes Gpr126 function in vivo. These results demonstrate that Gpr126 ECR utilizes a multi-faceted dynamic approach to regulate receptor function and provide relevant insights for ECR-targeted drug design.

Suggested Citation

  • Katherine Leon & Rebecca L. Cunningham & Joshua A. Riback & Ezra Feldman & Jingxian Li & Tobin R. Sosnick & Minglei Zhao & Kelly R. Monk & Demet Araç, 2020. "Structural basis for adhesion G protein-coupled receptor Gpr126 function," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14040-1
    DOI: 10.1038/s41467-019-14040-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-14040-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-14040-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szymon P. Kordon & Przemysław Dutka & Justyna M. Adamska & Sumit J. Bandekar & Katherine Leon & Satchal K. Erramilli & Brock Adams & Jingxian Li & Anthony A. Kossiakoff & Demet Araç, 2023. "Isoform- and ligand-specific modulation of the adhesion GPCR ADGRL3/Latrophilin3 by a synthetic binder," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Tai-Ying Chu & Céline Zheng-Gérard & Kuan-Yeh Huang & Yu-Chi Chang & Ying-Wen Chen & Kuan-Yu I & Yu-Ling Lo & Nien-Yi Chiang & Hsin-Yi Chen & Martin Stacey & Siamon Gordon & Wen-Yi Tseng & Chiao-Yin S, 2022. "GPR97 triggers inflammatory processes in human neutrophils via a macromolecular complex upstream of PAR2 activation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14040-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.