IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55559-2.html
   My bibliography  Save this article

Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster

Author

Listed:
  • Najla El Fissi

    (Karolinska Institutet)

  • Florian A. Rosenberger

    (Max-Planck Institute of Biochemistry)

  • Kai Chang

    (Karolinska Institutet)

  • Alissa Wilhalm

    (Karolinska Institutet)

  • Tom Barton-Owen

    (Cambridge Biomedical Campus
    Cambridge Biomedical Campus)

  • Fynn M. Hansen

    (Max-Planck Institute of Biochemistry)

  • Zoe Golder

    (Cambridge Biomedical Campus
    Cambridge Biomedical Campus)

  • David Alsina

    (Karolinska Institutet
    171 76)

  • Anna Wedell

    (171 76
    Karolinska Institutet)

  • Matthias Mann

    (Max-Planck Institute of Biochemistry
    University of Copenhagen)

  • Patrick F. Chinnery

    (Cambridge Biomedical Campus
    Cambridge Biomedical Campus)

  • Christoph Freyer

    (Karolinska Institutet
    171 76)

  • Anna Wredenberg

    (Karolinska Institutet
    171 76)

Abstract

Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain cellular homeostasis, their chronic activation can permanently affect cellular metabolism and signalling, ultimately impairing cell function. Here, we use a Drosophila melanogaster model expressing a proofreading-deficient mtDNA polymerase (POLγexo-) in a genetic screen to find genes that mitigate the harmful accumulation of mtDNA mutations. We identify critical pathways associated with nutrient sensing, insulin signalling, mitochondrial protein import, and autophagy that can rescue the lethal phenotype of the POLγexo- flies. Rescued flies, hemizygous for dilp1, atg2, tim14 or melted, normalise their autophagic flux and proteasome function and adapt their metabolism. Mutation frequencies remain high with the exception of melted-rescued flies, suggesting that melted may act early in development. Treating POLγexo- larvae with the autophagy activator rapamycin aggravates their lethal phenotype, highlighting that excessive autophagy can significantly contribute to the pathophysiology of mitochondrial diseases. Moreover, we show that the nucleation process of autophagy is a critical target for intervention.

Suggested Citation

  • Najla El Fissi & Florian A. Rosenberger & Kai Chang & Alissa Wilhalm & Tom Barton-Owen & Fynn M. Hansen & Zoe Golder & David Alsina & Anna Wedell & Matthias Mann & Patrick F. Chinnery & Christoph Frey, 2024. "Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55559-2
    DOI: 10.1038/s41467-024-55559-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55559-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55559-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marta Zaninello & Konstantinos Palikaras & Deborah Naon & Keiko Iwata & Stephanie Herkenne & Ruben Quintana-Cabrera & Martina Semenzato & Francesca Grespi & Fred N. Ross-Cisneros & Valerio Carelli & A, 2020. "Inhibition of autophagy curtails visual loss in a model of autosomal dominant optic atrophy," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Eirini Lionaki & Ilias Gkikas & Ioanna Daskalaki & Maria-Konstantina Ioannidi & Maria I. Klapa & Nektarios Tavernarakis, 2022. "Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Jonas Benjamin Michaelis & Melinda Elaine Brunstein & Süleyman Bozkurt & Ludovico Alves & Martin Wegner & Manuel Kaulich & Christian Pohl & Christian Münch, 2022. "Protein import motor complex reacts to mitochondrial misfolding by reducing protein import and activating mitophagy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Aleksandra Trifunovic & Anna Wredenberg & Maria Falkenberg & Johannes N. Spelbrink & Anja T. Rovio & Carl E. Bruder & Mohammad Bohlooly-Y & Sebastian Gidlöf & Anders Oldfors & Rolf Wibom & Jan Törnell, 2004. "Premature ageing in mice expressing defective mitochondrial DNA polymerase," Nature, Nature, vol. 429(6990), pages 417-423, May.
    5. Caroline Mauvezin & Péter Nagy & Gábor Juhász & Thomas P. Neufeld, 2015. "Autophagosome–lysosome fusion is independent of V-ATPase-mediated acidification," Nature Communications, Nature, vol. 6(1), pages 1-14, November.
    6. Ana Bratic & Timo E. S. Kauppila & Bertil Macao & Sebastian Grönke & Triinu Siibak & James B. Stewart & Francesca Baggio & Jacqueline Dols & Linda Partridge & Maria Falkenberg & Anna Wredenberg & Nils, 2015. "Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies," Nature Communications, Nature, vol. 6(1), pages 1-15, December.
    7. Simonetta Andreazza & Colby L. Samstag & Alvaro Sanchez-Martinez & Erika Fernandez-Vizarra & Aurora Gomez-Duran & Juliette J. Lee & Roberta Tufi & Michael J. Hipp & Elizabeth K. Schmidt & Thomas J. Ni, 2019. "Mitochondrially-targeted APOBEC1 is a potent mtDNA mutator affecting mitochondrial function and organismal fitness in Drosophila," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    8. Sophia Doll & Martina Dreßen & Philipp E. Geyer & Daniel N. Itzhak & Christian Braun & Stefanie A. Doppler & Florian Meier & Marcus-Andre Deutsch & Harald Lahm & Rüdiger Lange & Markus Krane & Matthia, 2017. "Region and cell-type resolved quantitative proteomic map of the human heart," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gina Buchel & Ashok R. Nayak & Karl Herbine & Azadeh Sarfallah & Viktoriia O. Sokolova & Angelica Zamudio-Ochoa & Dmitry Temiakov, 2023. "Structural basis for DNA proofreading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jingbo Qie & Yang Liu & Yunzhi Wang & Fan Zhang & Zhaoyu Qin & Sha Tian & Mingwei Liu & Kai Li & Wenhao Shi & Lei Song & Mingjun Sun & Yexin Tong & Ping Hu & Tao Gong & Xiaqiong Wang & Yi Huang & Bolo, 2022. "Integrated proteomic and transcriptomic landscape of macrophages in mouse tissues," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    3. Juan C. Landoni & Semin Erkul & Tuomas Laalo & Steffi Goffart & Riikka Kivelä & Karlo Skube & Anni I. Nieminen & Sara A. Wickström & James Stewart & Anu Suomalainen, 2024. "Overactive mitochondrial DNA replication disrupts perinatal cardiac maturation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Chujiao Lin & Qiyuan Yang & Dongsheng Guo & Jun Xie & Yeon-Suk Yang & Sachin Chaugule & Ngoc DeSouza & Won-Taek Oh & Rui Li & Zhihao Chen & Aijaz A. John & Qiang Qiu & Lihua Julie Zhu & Matthew B. Gre, 2022. "Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Bing Han & Zhan-Ming Li & Xu-Yun Zhao & Kai Liang & Yu-Qin Mao & Shi-Long Zhang & Li-Ying Huang & Chao-Yue Kong & Xin Peng & Hui-Ling Chen & Jia-Ting Huang & Zhao-Xia Wu & Jin-Qing Yao & Pei-Ran Cai &, 2024. "Annonaceous acetogenins mimic AA005 targets mitochondrial trifunctional enzyme alpha subunit to treat obesity in male mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Liang Yang & Zifeng Ruan & Xiaobing Lin & Hao Wang & Yanmin Xin & Haite Tang & Zhijuan Hu & Yunhao Zhou & Yi Wu & Junwei Wang & Dajiang Qin & Gang Lu & Kerry M. Loomes & Wai-Yee Chan & Xingguo Liu, 2024. "NAD+ dependent UPRmt activation underlies intestinal aging caused by mitochondrial DNA mutations," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Janne Purhonen & Rishi Banerjee & Vilma Wanne & Nina Sipari & Matthias Mörgelin & Vineta Fellman & Jukka Kallijärvi, 2023. "Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    8. Robin Caire & Estelle Audoux & Mireille Thomas & Elisa Dalix & Aurélien Peyron & Killian Rodriguez & Nicola Pordone & Johann Guillemot & Yann Dickerscheit & Hubert Marotte & François Vandenesch & Fréd, 2022. "YAP promotes cell-autonomous immune responses to tackle intracellular Staphylococcus aureus in vitro," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Vanitha Nithianandam & Hassan Bukhari & Matthew J. Leventhal & Rachel A. Battaglia & Xianjun Dong & Ernest Fraenkel & Mel B. Feany, 2023. "Integrative analysis reveals a conserved role for the amyloid precursor protein in proteostasis during aging," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Marc Thilo Figge & Andreas S Reichert & Michael Meyer-Hermann & Heinz D Osiewacz, 2012. "Deceleration of Fusion–Fission Cycles Improves Mitochondrial Quality Control during Aging," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-18, June.
    11. Zongyuan Liu & Rebecca Ulrich vonBargen & April L. Kendricks & Kate Wheeler & Ana Carolina Leão & Krithivasan Sankaranarayanan & Danya A. Dean & Shelley S. Kane & Ekram Hossain & Jeroen Pollet & Maria, 2023. "Localized cardiac small molecule trajectories and persistent chemical sequelae in experimental Chagas disease," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    12. Joshua J. Rennick & Cameron J. Nowell & Colin W. Pouton & Angus P. R. Johnston, 2022. "Resolving subcellular pH with a quantitative fluorescent lifetime biosensor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Jie Fang & Wenli Jiang & Weixia Zhao & Jie Wang & Beibei Cao & Nan Wang & Baohui Chen & Chao Wang & Wei Zou, 2024. "Endocytosis restricts dendrite branching via removing ectopically localized branching ligands," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Keiji Kajiwara & Hiroshi Osaki & Steffen Greßies & Keiko Kuwata & Ju Hyun Kim & Tobias Gensch & Yoshikatsu Sato & Frank Glorius & Shigehiro Yamaguchi & Masayasu Taki, 2022. "A negative-solvatochromic fluorescent probe for visualizing intracellular distributions of fatty acid metabolites," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Tirthankar Mohanty & Christofer A. Q. Karlsson & Yashuan Chao & Erik Malmström & Eleni Bratanis & Andrietta Grentzmann & Martina Mørch & Victor Nizet & Lars Malmström & Adam Linder & Oonagh Shannon & , 2023. "A pharmacoproteomic landscape of organotypic intervention responses in Gram-negative sepsis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55559-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.