IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52164-1.html
   My bibliography  Save this article

Overactive mitochondrial DNA replication disrupts perinatal cardiac maturation

Author

Listed:
  • Juan C. Landoni

    (University of Helsinki)

  • Semin Erkul

    (University of Helsinki)

  • Tuomas Laalo

    (University of Helsinki)

  • Steffi Goffart

    (University of Eastern Finland)

  • Riikka Kivelä

    (University of Helsinki
    Wihuri Research Institute
    University of Jyväskylä)

  • Karlo Skube

    (University of Helsinki)

  • Anni I. Nieminen

    (University of Helsinki)

  • Sara A. Wickström

    (University of Helsinki
    Wihuri Research Institute)

  • James Stewart

    (Newcastle University)

  • Anu Suomalainen

    (University of Helsinki
    Helsinki University Hospital
    University of Helsinki)

Abstract

High mitochondrial DNA (mtDNA) amount has been reported to be beneficial for resistance and recovery of metabolic stress, while increased mtDNA synthesis activity can drive aging signs. The intriguing contrast of these two mtDNA boosting outcomes prompted us to jointly elevate mtDNA amount and frequency of replication in mice. We report that high activity of mtDNA synthesis inhibits perinatal metabolic maturation of the heart. The offspring of the asymptomatic parental lines are born healthy but manifest dilated cardiomyopathy and cardiac collapse during the first days of life. The pathogenesis, further enhanced by mtDNA mutagenesis, involves prenatal upregulation of mitochondrial integrated stress response and the ferroptosis-inducer MESH1, leading to cardiac fibrosis and cardiomyocyte death after birth. Our evidence indicates that the tight control of mtDNA replication is critical for early cardiac homeostasis. Importantly, ferroptosis sensitivity is a potential targetable mechanism for infantile-onset cardiomyopathy, a common manifestation of mitochondrial diseases.

Suggested Citation

  • Juan C. Landoni & Semin Erkul & Tuomas Laalo & Steffi Goffart & Riikka Kivelä & Karlo Skube & Anni I. Nieminen & Sara A. Wickström & James Stewart & Anu Suomalainen, 2024. "Overactive mitochondrial DNA replication disrupts perinatal cardiac maturation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52164-1
    DOI: 10.1038/s41467-024-52164-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52164-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52164-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aleksandra Trifunovic & Anna Wredenberg & Maria Falkenberg & Johannes N. Spelbrink & Anja T. Rovio & Carl E. Bruder & Mohammad Bohlooly-Y & Sebastian Gidlöf & Anders Oldfors & Rolf Wibom & Jan Törnell, 2004. "Premature ageing in mice expressing defective mitochondrial DNA polymerase," Nature, Nature, vol. 429(6990), pages 417-423, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chujiao Lin & Qiyuan Yang & Dongsheng Guo & Jun Xie & Yeon-Suk Yang & Sachin Chaugule & Ngoc DeSouza & Won-Taek Oh & Rui Li & Zhihao Chen & Aijaz A. John & Qiang Qiu & Lihua Julie Zhu & Matthew B. Gre, 2022. "Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Liang Yang & Zifeng Ruan & Xiaobing Lin & Hao Wang & Yanmin Xin & Haite Tang & Zhijuan Hu & Yunhao Zhou & Yi Wu & Junwei Wang & Dajiang Qin & Gang Lu & Kerry M. Loomes & Wai-Yee Chan & Xingguo Liu, 2024. "NAD+ dependent UPRmt activation underlies intestinal aging caused by mitochondrial DNA mutations," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Janne Purhonen & Rishi Banerjee & Vilma Wanne & Nina Sipari & Matthias Mörgelin & Vineta Fellman & Jukka Kallijärvi, 2023. "Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    4. Marc Thilo Figge & Andreas S Reichert & Michael Meyer-Hermann & Heinz D Osiewacz, 2012. "Deceleration of Fusion–Fission Cycles Improves Mitochondrial Quality Control during Aging," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-18, June.
    5. Gina Buchel & Ashok R. Nayak & Karl Herbine & Azadeh Sarfallah & Viktoriia O. Sokolova & Angelica Zamudio-Ochoa & Dmitry Temiakov, 2023. "Structural basis for DNA proofreading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52164-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.