IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44808-z.html
   My bibliography  Save this article

NAD+ dependent UPRmt activation underlies intestinal aging caused by mitochondrial DNA mutations

Author

Listed:
  • Liang Yang

    (Guangzhou Medical University
    Chinese Academy of Sciences
    Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Zifeng Ruan

    (Guangzhou Medical University
    Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaobing Lin

    (Guangzhou Medical University
    Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Hao Wang

    (Guangzhou Medical University
    Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Yanmin Xin

    (Guangzhou Medical University
    Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Haite Tang

    (Guangzhou Medical University
    Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Zhijuan Hu

    (Guangzhou Medical University
    Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yunhao Zhou

    (Guangzhou Medical University
    Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yi Wu

    (Guangzhou Medical University
    Chinese Academy of Sciences
    Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Junwei Wang

    (Guangzhou Medical University
    Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Dajiang Qin

    (Chinese Academy of Sciences
    Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University)

  • Gang Lu

    (CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong)

  • Kerry M. Loomes

    (University of Auckland)

  • Wai-Yee Chan

    (CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong)

  • Xingguo Liu

    (Guangzhou Medical University
    Chinese Academy of Sciences
    Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

Abstract

Aging in mammals is accompanied by an imbalance of intestinal homeostasis and accumulation of mitochondrial DNA (mtDNA) mutations. However, little is known about how accumulated mtDNA mutations modulate intestinal homeostasis. We observe the accumulation of mtDNA mutations in the small intestine of aged male mice, suggesting an association with physiological intestinal aging. Using polymerase gamma (POLG) mutator mice and wild-type mice, we generate male mice with progressive mtDNA mutation burdens. Investigation utilizing organoid technology and in vivo intestinal stem cell labeling reveals decreased colony formation efficiency of intestinal crypts and LGR5-expressing intestinal stem cells in response to a threshold mtDNA mutation burden. Mechanistically, increased mtDNA mutation burden exacerbates the aging phenotype of the small intestine through ATF5 dependent mitochondrial unfolded protein response (UPRmt) activation. This aging phenotype is reversed by supplementation with the NAD+ precursor, NMN. Thus, we uncover a NAD+ dependent UPRmt triggered by mtDNA mutations that regulates the intestinal aging.

Suggested Citation

  • Liang Yang & Zifeng Ruan & Xiaobing Lin & Hao Wang & Yanmin Xin & Haite Tang & Zhijuan Hu & Yunhao Zhou & Yi Wu & Junwei Wang & Dajiang Qin & Gang Lu & Kerry M. Loomes & Wai-Yee Chan & Xingguo Liu, 2024. "NAD+ dependent UPRmt activation underlies intestinal aging caused by mitochondrial DNA mutations," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44808-z
    DOI: 10.1038/s41467-024-44808-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44808-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44808-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nalle Pentinmikko & Sharif Iqbal & Miyeko Mana & Simon Andersson & Armand B. Cognetta & Radu M. Suciu & Jatin Roper & Kalle Luopajärvi & Eino Markelin & Swetha Gopalakrishnan & Olli-Pekka Smolander & , 2019. "Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium," Nature, Nature, vol. 571(7765), pages 398-402, July.
    2. Jaime M. Ross & James B. Stewart & Erik Hagström & Stefan Brené & Arnaud Mourier & Giuseppe Coppotelli & Christoph Freyer & Marie Lagouge & Barry J. Hoffer & Lars Olson & Nils-Göran Larsson, 2013. "Germline mitochondrial DNA mutations aggravate ageing and can impair brain development," Nature, Nature, vol. 501(7467), pages 412-415, September.
    3. Michal Shoshkes-Carmel & Yue J. Wang & Kirk J. Wangensteen & Beáta Tóth & Ayano Kondo & Efi E. Massasa & Shalev Itzkovitz & Klaus H. Kaestner, 2018. "Subepithelial telocytes are an important source of Wnts that supports intestinal crypts," Nature, Nature, vol. 557(7704), pages 242-246, May.
    4. Evandro F. Fang & Yujun Hou & Sofie Lautrup & Martin Borch Jensen & Beimeng Yang & Tanima SenGupta & Domenica Caponio & Rojyar Khezri & Tyler G. Demarest & Yahyah Aman & David Figueroa & Marya Morevat, 2019. "NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    5. Bing Zhao & Zhen Qi & Yehua Li & Chongkai Wang & Wei Fu & Ye-Guang Chen, 2015. "The non-muscle-myosin-II heavy chain Myh9 mediates colitis-induced epithelium injury by restricting Lgr5+ stem cells," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    6. Michal Shoshkes-Carmel & Yue J. Wang & Kirk J. Wangensteen & Beáta Tóth & Ayano Kondo & Efi E. Massasa & Shalev Itzkovitz & Klaus H. Kaestner, 2018. "Author Correction: Subepithelial telocytes are an important source of Wnts that supports intestinal crypts," Nature, Nature, vol. 560(7718), pages 29-29, August.
    7. Xiaoyan Guo & Giovanni Aviles & Yi Liu & Ruilin Tian & Bret A. Unger & Yu-Hsiu T. Lin & Arun P. Wiita & Ke Xu & M. Almira Correia & Martin Kampmann, 2020. "Mitochondrial stress is relayed to the cytosol by an OMA1–DELE1–HRI pathway," Nature, Nature, vol. 579(7799), pages 427-432, March.
    8. Toshiro Sato & Robert G. Vries & Hugo J. Snippert & Marc van de Wetering & Nick Barker & Daniel E. Stange & Johan H. van Es & Arie Abo & Pekka Kujala & Peter J. Peters & Hans Clevers, 2009. "Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche," Nature, Nature, vol. 459(7244), pages 262-265, May.
    9. Aleksandra Trifunovic & Anna Wredenberg & Maria Falkenberg & Johannes N. Spelbrink & Anja T. Rovio & Carl E. Bruder & Mohammad Bohlooly-Y & Sebastian Gidlöf & Anders Oldfors & Rolf Wibom & Jan Törnell, 2004. "Premature ageing in mice expressing defective mitochondrial DNA polymerase," Nature, Nature, vol. 429(6990), pages 417-423, May.
    10. Bahar Degirmenci & Tomas Valenta & Slavica Dimitrieva & George Hausmann & Konrad Basler, 2018. "GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells," Nature, Nature, vol. 558(7710), pages 449-453, June.
    11. Nadee Nissanka & Sandra R. Bacman & Melanie J. Plastini & Carlos T. Moraes, 2018. "The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    12. Toshiro Sato & Johan H. van Es & Hugo J. Snippert & Daniel E. Stange & Robert G. Vries & Maaike van den Born & Nick Barker & Noah F. Shroyer & Marc van de Wetering & Hans Clevers, 2011. "Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts," Nature, Nature, vol. 469(7330), pages 415-418, January.
    13. Riekelt H. Houtkooper & Laurent Mouchiroud & Dongryeol Ryu & Norman Moullan & Elena Katsyuba & Graham Knott & Robert W. Williams & Johan Auwerx, 2013. "Mitonuclear protein imbalance as a conserved longevity mechanism," Nature, Nature, vol. 497(7450), pages 451-457, May.
    14. Evelyn Fessler & Eva-Maria Eckl & Sabine Schmitt & Igor Alves Mancilla & Matthias F. Meyer-Bender & Monika Hanf & Julia Philippou-Massier & Stefan Krebs & Hans Zischka & Lucas T. Jae, 2020. "A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol," Nature, Nature, vol. 579(7799), pages 433-437, March.
    15. Nikolce Gjorevski & Norman Sachs & Andrea Manfrin & Sonja Giger & Maiia E. Bragina & Paloma Ordóñez-Morán & Hans Clevers & Matthias P. Lutolf, 2016. "Designer matrices for intestinal stem cell and organoid culture," Nature, Nature, vol. 539(7630), pages 560-564, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mara Martín-Alonso & Sharif Iqbal & Pia M. Vornewald & Håvard T. Lindholm & Mirjam J. Damen & Fernando Martínez & Sigrid Hoel & Alberto Díez-Sánchez & Maarten Altelaar & Pekka Katajisto & Alicia G. Ar, 2021. "Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    2. Elisa Manieri & Guodong Tie & Ermanno Malagola & Davide Seruggia & Shariq Madha & Adrianna Maglieri & Kun Huang & Yuko Fujiwara & Kevin Zhang & Stuart H. Orkin & Timothy C. Wang & Ruiyang He & Neil Mc, 2023. "Role of PDGFRA+ cells and a CD55+ PDGFRALo fraction in the gastric mesenchymal niche," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Simone Isling Pærregaard & Line Wulff & Sophie Schussek & Kristoffer Niss & Urs Mörbe & Johan Jendholm & Kerstin Wendland & Anna T. Andrusaite & Kevin F. Brulois & Robert J. B. Nibbs & Katarzyna Sitni, 2023. "The small and large intestine contain related mesenchymal subsets that derive from embryonic Gli1+ precursors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Ryan J. Smith & Minggao Liang & Adrian Kwan Ho Loe & Theodora Yung & Ji-Eun Kim & Matthew Hudson & Michael D. Wilson & Tae-Hee Kim, 2023. "Epigenetic control of cellular crosstalk defines gastrointestinal organ fate and function," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Martti Maimets & Marianne Terndrup Pedersen & Jordi Guiu & Jes Dreier & Malte Thodberg & Yasuko Antoku & Pawel J. Schweiger & Leonor Rib & Raul Bardini Bressan & Yi Miao & K. Christopher Garcia & Albi, 2022. "Mesenchymal-epithelial crosstalk shapes intestinal regionalisation via Wnt and Shh signalling," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Jina Yun & Simon Hansen & Otto Morris & David T. Madden & Clare Peters Libeu & Arjun J. Kumar & Cameron Wehrfritz & Aaron H. Nile & Yingnan Zhang & Lijuan Zhou & Yuxin Liang & Zora Modrusan & Michelle, 2023. "Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Manqiang Lin & Kimberly Hartl & Julian Heuberger & Giulia Beccaceci & Hilmar Berger & Hao Li & Lichao Liu & Stefanie Müllerke & Thomas Conrad & Felix Heymann & Andrew Woehler & Frank Tacke & Nikolaus , 2023. "Establishment of gastrointestinal assembloids to study the interplay between epithelial crypts and their mesenchymal niche," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Jeremiah Bernier-Latmani & Cristina Mauri & Rachel Marcone & François Renevey & Stephan Durot & Liqun He & Michael Vanlandewijck & Catherine Maclachlan & Suzel Davanture & Nicola Zamboni & Graham W. K, 2022. "ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Urban Lendahl & Lars Muhl & Christer Betsholtz, 2022. "Identification, discrimination and heterogeneity of fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Suran Kim & Sungjin Min & Yi Sun Choi & Sung-Hyun Jo & Jae Hun Jung & Kyusun Han & Jin Kim & Soohwan An & Yong Woo Ji & Yun-Gon Kim & Seung-Woo Cho, 2022. "Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    11. Shuting Li & Chia-Wen Lu & Elia C. Diem & Wang Li & Melanie Guderian & Marc Lindenberg & Friederike Kruse & Manuela Buettner & Stefan Floess & Markus R. Winny & Robert Geffers & Hans-Hermann Richnow &, 2022. "Acetyl-CoA-Carboxylase 1-mediated de novo fatty acid synthesis sustains Lgr5+ intestinal stem cell function," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Omid Omrani & Anna Krepelova & Seyed Mohammad Mahdi Rasa & Dovydas Sirvinskas & Jing Lu & Francesco Annunziata & George Garside & Seerat Bajwa & Susanne Reinhardt & Lisa Adam & Sandra Käppel & Nadia D, 2023. "IFNγ-Stat1 axis drives aging-associated loss of intestinal tissue homeostasis and regeneration," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Marco Calafiore & Ya-Yuan Fu & Paola Vinci & Viktor Arnhold & Winston Y. Chang & Suze A. Jansen & Anastasiya Egorova & Shuichiro Takashima & Jason Kuttiyara & Takahiro Ito & Jonathan Serody & Susumu N, 2023. "A tissue-intrinsic IL-33/EGF circuit promotes epithelial regeneration after intestinal injury," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Jong Hoon Won & Jacob S. Choi & Joon-Il Jun, 2022. "CCN1 interacts with integrins to regulate intestinal stem cell proliferation and differentiation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Evelyn Fessler & Luisa Krumwiede & Lucas T. Jae, 2022. "DELE1 tracks perturbed protein import and processing in human mitochondria," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Victoria H. Ng & Zachary Spencer & Leif R. Neitzel & Anmada Nayak & Matthew A. Loberg & Chen Shen & Sara N. Kassel & Heather K. Kroh & Zhenyi An & Christin C. Anthony & Jamal M. Bryant & Amanda Lawson, 2023. "The USP46 complex deubiquitylates LRP6 to promote Wnt/β-catenin signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Joana Silva & Ferhat Alkan & Sofia Ramalho & Goda Snieckute & Stefan Prekovic & Ana Krotenberg Garcia & Santiago Hernández-Pérez & Rob Kammen & Danielle Barnum & Liesbeth Hoekman & Maarten Altelaar & , 2022. "Ribosome impairment regulates intestinal stem cell identity via ZAKɑ activation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Maisumu Gulimiheranmu & Shuang Li & Junmei Zhou, 2021. "In Vitro Recapitulation of Neuropsychiatric Disorders with Pluripotent Stem Cells-Derived Brain Organoids," IJERPH, MDPI, vol. 18(23), pages 1-14, November.
    19. Yi Liu & Efren Reyes & David Castillo-Azofeifa & Ophir D. Klein & Todd Nystul & Diane L. Barber, 2023. "Intracellular pH dynamics regulates intestinal stem cell lineage specification," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Hakjoo Lee & Tae Jin Lee & Chad A. Galloway & Wenbo Zhi & Wei Xiao & Karen L. de Mesy Bentley & Ashok Sharma & Yong Teng & Hiromi Sesaki & Yisang Yoon, 2023. "The mitochondrial fusion protein OPA1 is dispensable in the liver and its absence induces mitohormesis to protect liver from drug-induced injury," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44808-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.