IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33348-z.html
   My bibliography  Save this article

Resolving subcellular pH with a quantitative fluorescent lifetime biosensor

Author

Listed:
  • Joshua J. Rennick

    (Monash University)

  • Cameron J. Nowell

    (Monash University)

  • Colin W. Pouton

    (Monash University)

  • Angus P. R. Johnston

    (Monash University)

Abstract

Changes in sub-cellular pH play a key role in metabolism, membrane transport, and triggering cargo release from therapeutic delivery systems. Most methods to measure pH rely on intensity changes of pH sensitive fluorophores, however, these measurements are hampered by high uncertainty in the inferred pH and the need for multiple fluorophores. To address this, here we combine pH dependant fluorescent lifetime imaging microscopy (pHLIM) with deep learning to accurately quantify sub-cellular pH in individual vesicles. We engineer the pH sensitive protein mApple to localise in the cytosol, endosomes, and lysosomes, and demonstrate that pHLIM can rapidly detect pH changes induced by drugs such as bafilomycin A1 and chloroquine. We also demonstrate that polyethylenimine (a common transfection reagent) does not exhibit a proton sponge effect and had no measurable impact on the pH of endocytic vesicles. pHLIM is a simple and quantitative method that will help to understand drug action and disease progression.

Suggested Citation

  • Joshua J. Rennick & Cameron J. Nowell & Colin W. Pouton & Angus P. R. Johnston, 2022. "Resolving subcellular pH with a quantitative fluorescent lifetime biosensor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33348-z
    DOI: 10.1038/s41467-022-33348-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33348-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33348-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Caroline Mauvezin & Péter Nagy & Gábor Juhász & Thomas P. Neufeld, 2015. "Autophagosome–lysosome fusion is independent of V-ATPase-mediated acidification," Nature Communications, Nature, vol. 6(1), pages 1-14, November.
    2. Lucas von Chamier & Romain F. Laine & Johanna Jukkala & Christoph Spahn & Daniel Krentzel & Elias Nehme & Martina Lerche & Sara Hernández-Pérez & Pieta K. Mattila & Eleni Karinou & Séamus Holden & Ahm, 2021. "Democratising deep learning for microscopy with ZeroCostDL4Mic," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Gero Miesenböck & Dino A. De Angelis & James E. Rothman, 1998. "Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins," Nature, Nature, vol. 394(6689), pages 192-195, July.
    4. Laura I. FitzGerald & Luigi Aurelio & Moore Chen & Daniel Yuen & Joshua J. Rennick & Bim Graham & Angus P. R. Johnston, 2020. "A molecular sensor to quantify the localization of proteins, DNA and nanoparticles in cells," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Chen & Jiasu Xu & Boqian Wang & Yi Ding & Aynur Abdulla & Yiyang Li & Lai Jiang & Xianting Ding, 2024. "SpiDe-Sr: blind super-resolution network for precise cell segmentation and clustering in spatial proteomics imaging," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Timo Kuhn & Amit N. Landge & David Mörsdorf & Jonas Coßmann & Johanna Gerstenecker & Daniel Čapek & Patrick Müller & J. Christof M. Gebhardt, 2022. "Single-molecule tracking of Nodal and Lefty in live zebrafish embryos supports hindered diffusion model," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Vanitha Nithianandam & Hassan Bukhari & Matthew J. Leventhal & Rachel A. Battaglia & Xianjun Dong & Ernest Fraenkel & Mel B. Feany, 2023. "Integrative analysis reveals a conserved role for the amyloid precursor protein in proteostasis during aging," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Marley D Kass & Andrew H Moberly & John P McGann, 2013. "Spatiotemporal Alterations in Primary Odorant Representations in Olfactory Marker Protein Knockout Mice," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    5. Albert Pineda Rodó & Libuše Váchová & Zdena Palková, 2012. "In Vivo Determination of Organellar pH Using a Universal Wavelength-Based Confocal Microscopy Approach," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-12, March.
    6. Christian Hoffmann & Jakob Rentsch & Taka A. Tsunoyama & Akshita Chhabra & Gerard Aguilar Perez & Rajdeep Chowdhury & Franziska Trnka & Aleksandr A. Korobeinikov & Ali H. Shaib & Marcelo Ganzella & Gr, 2023. "Synapsin condensation controls synaptic vesicle sequestering and dynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Mable Lam & Koji Takeo & Rafael G. Almeida & Madeline H. Cooper & Kathryn Wu & Manasi Iyer & Husniye Kantarci & J. Bradley Zuchero, 2022. "CNS myelination requires VAMP2/3-mediated membrane expansion in oligodendrocytes," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    8. Kaarjel K. Narayanasamy & Johanna V. Rahm & Siddharth Tourani & Mike Heilemann, 2022. "Fast DNA-PAINT imaging using a deep neural network," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Robin Caire & Estelle Audoux & Mireille Thomas & Elisa Dalix & Aurélien Peyron & Killian Rodriguez & Nicola Pordone & Johann Guillemot & Yann Dickerscheit & Hubert Marotte & François Vandenesch & Fréd, 2022. "YAP promotes cell-autonomous immune responses to tackle intracellular Staphylococcus aureus in vitro," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Sara Rojas-Vázquez & Beatriz Lozano-Torres & Alba García-Fernández & Irene Galiana & Ana Perez-Villalba & Pablo Martí-Rodrigo & M. José Palop & Marcia Domínguez & Mar Orzáez & Félix Sancenón & Juan F., 2024. "A renal clearable fluorogenic probe for in vivo β-galactosidase activity detection during aging and senolysis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Shivesh Chaudhary & Sihoon Moon & Hang Lu, 2022. "Fast, efficient, and accurate neuro-imaging denoising via supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Francesca Pennacchietti & Jonatan Alvelid & Rodrigo A. Morales & Martina Damenti & Dirk Ollech & Olena S. Oliinyk & Daria M. Shcherbakova & Eduardo J. Villablanca & Vladislav V. Verkhusha & Ilaria Tes, 2023. "Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organisms," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Jung-Hwan Choi & Lauren Bayer Horowitz & Niels Ringstad, 2021. "Opponent vesicular transporters regulate the strength of glutamatergic neurotransmission in a C. elegans sensory circuit," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    14. Keiji Kajiwara & Hiroshi Osaki & Steffen Greßies & Keiko Kuwata & Ju Hyun Kim & Tobias Gensch & Yoshikatsu Sato & Frank Glorius & Shigehiro Yamaguchi & Masayasu Taki, 2022. "A negative-solvatochromic fluorescent probe for visualizing intracellular distributions of fatty acid metabolites," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Hampus Hedlund & Hampus Rietz & Johanna M. Johansson & Hanna C. Eriksson & Wahed Zedan & Linfeng Huang & Jonas Wallin & Anders Wittrup, 2023. "Single-cell quantification and dose-response of cytosolic siRNA delivery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Matthias Griebel & Dennis Segebarth & Nikolai Stein & Nina Schukraft & Philip Tovote & Robert Blum & Christoph M. Flath, 2023. "Deep learning-enabled segmentation of ambiguous bioimages with deepflash2," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Shanley F. Longfield & Mahdie Mollazade & Tristan P. Wallis & Rachel S. Gormal & Merja Joensuu & Jesse R. Wark & Ashley J. Waardenberg & Christopher Small & Mark E. Graham & Frédéric A. Meunier & Ramó, 2023. "Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33348-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.