IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25801-2.html
   My bibliography  Save this article

Next generation reservoir computing

Author

Listed:
  • Daniel J. Gauthier

    (The Ohio State University, Department of Physics
    ResCon Technologies, LLC)

  • Erik Bollt

    (Clarkson University, Department of Electrical and Computer Engineering
    Clarkson Center for Complex Systems Science (C3S2))

  • Aaron Griffith

    (The Ohio State University, Department of Physics)

  • Wendson A. S. Barbosa

    (The Ohio State University, Department of Physics)

Abstract

Reservoir computing is a best-in-class machine learning algorithm for processing information generated by dynamical systems using observed time-series data. Importantly, it requires very small training data sets, uses linear optimization, and thus requires minimal computing resources. However, the algorithm uses randomly sampled matrices to define the underlying recurrent neural network and has a multitude of metaparameters that must be optimized. Recent results demonstrate the equivalence of reservoir computing to nonlinear vector autoregression, which requires no random matrices, fewer metaparameters, and provides interpretable results. Here, we demonstrate that nonlinear vector autoregression excels at reservoir computing benchmark tasks and requires even shorter training data sets and training time, heralding the next generation of reservoir computing.

Suggested Citation

  • Daniel J. Gauthier & Erik Bollt & Aaron Griffith & Wendson A. S. Barbosa, 2021. "Next generation reservoir computing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25801-2
    DOI: 10.1038/s41467-021-25801-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25801-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25801-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    2. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Gianluca Fabiani & Nikolaos Evangelou & Tianqi Cui & Juan M. Bello-Rivas & Cristina P. Martin-Linares & Constantinos Siettos & Ioannis G. Kevrekidis, 2024. "Task-oriented machine learning surrogates for tipping points of agent-based models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yang, J. & Primo, E. & Aleja, D. & Criado, R. & Boccaletti, S. & Alfaro-Bittner, K., 2022. "Implementing and morphing Boolean gates with adaptive synchronization: The case of spiking neurons," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Zequn Lin & Zhaofan Lu & Zengru Di & Ying Tang, 2024. "Learning noise-induced transitions by multi-scaling reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Robert M. Kent & Wendson A. S. Barbosa & Daniel J. Gauthier, 2024. "Controlling chaos using edge computing hardware," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Tao Wu & Xiangyun Gao & Feng An & Xiaotian Sun & Haizhong An & Zhen Su & Shraddha Gupta & Jianxi Gao & Jürgen Kurths, 2024. "Predicting multiple observations in complex systems through low-dimensional embeddings," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Berry, Christopher & Douglas Hoffman, K., 2023. "Communicating intent: Effects of employer-controlled tipping strategy disclosures on tip amount and firm evaluations," Journal of Business Research, Elsevier, vol. 160(C).
    10. Pengshan Xie & Yunchao Xu & Jingwen Wang & Dengji Li & Yuxuan Zhang & Zixin Zeng & Boxiang Gao & Quan Quan & Bowen Li & You Meng & Weijun Wang & Yezhan Li & Yan Yan & Yi Shen & Jia Sun & Johnny C. Ho, 2024. "Birdlike broadband neuromorphic visual sensor arrays for fusion imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Chicchi, Lorenzo & Fanelli, Duccio & Giambagli, Lorenzo & Buffoni, Lorenzo & Carletti, Timoteo, 2023. "Recurrent Spectral Network (RSN): Shaping a discrete map to reach automated classification," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    12. Ling-Wei Kong & Gene A. Brewer & Ying-Cheng Lai, 2024. "Reservoir-computing based associative memory and itinerancy for complex dynamical attractors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Zheng-Meng Zhai & Mohammadamin Moradi & Ling-Wei Kong & Bryan Glaz & Mulugeta Haile & Ying-Cheng Lai, 2023. "Model-free tracking control of complex dynamical trajectories with machine learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Lina Jaurigue & Kathy Lüdge, 2022. "Connecting reservoir computing with statistical forecasting and deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    15. Jérémie Laydevant & Danijela Marković & Julie Grollier, 2024. "Training an Ising machine with equilibrium propagation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Minati, Ludovico & Bartels, Jim & Li, Chao & Frasca, Mattia & Ito, Hiroyuki, 2022. "Synchronization phenomena in dual-transistor spiking oscillators realized experimentally towards physical reservoirs," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    17. Min Yan & Can Huang & Peter Bienstman & Peter Tino & Wei Lin & Jie Sun, 2024. "Emerging opportunities and challenges for the future of reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Graciela Schiliuk & Tullio Buccellato & Jens Lapointe-Rohde & Georgios Palaiodimos & Habib Attia & Marthe Memoracion Hinojales & Catharine Kho & Gennady Vasiliev & Tigran Kostanyan & Alexandra de Carv, 2021. "Regional responses to the Covid-19 crisis: a comparative study from economic, policy, and institutional perspectives," Discussion Papers 18, European Stability Mechanism, revised 08 Nov 2021.
    19. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25801-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.