IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55052-w.html
   My bibliography  Save this article

Spatiotemporal proteomics reveals the biosynthetic lysosomal membrane protein interactome in neurons

Author

Listed:
  • Chun Hei Li

    (Utrecht University)

  • Noortje Kersten

    (Utrecht University)

  • Nazmiye Özkan

    (Utrecht University)

  • Dan T. M. Nguyen

    (Utrecht University)

  • Max Koppers

    (Utrecht University
    Vrije Universiteit Amsterdam)

  • Harm Post

    (Utrecht University)

  • Maarten Altelaar

    (Utrecht University)

  • Ginny G. Farias

    (Utrecht University)

Abstract

Lysosomes are membrane-bound organelles critical for maintaining cellular homeostasis. Delivery of biosynthetic lysosomal proteins to lysosomes is crucial to orchestrate proper lysosomal function. However, it remains unknown how the delivery of biosynthetic lysosomal proteins to lysosomes is ensured in neurons, which are highly polarized cells. Here, we developed Protein Origin, Trafficking And Targeting to Organelle Mapping (POTATOMap), by combining trafficking synchronization and proximity-labelling based proteomics, to unravel the trafficking routes and interactome of the biosynthetic lysosomal membrane protein LAMP1 at specified time points. This approach, combined with advanced microscopy, enables us to identify the neuronal domain-specific trafficking machineries of biosynthetic LAMP1. We reveal a role in replenishing axonal lysosomes, in delivery of newly synthesized axonal synaptic proteins, and interactions with RNA granules to facilitate hitchhiking in the axon. POTATOMap offers a robust approach to map out dynamic biosynthetic protein trafficking and interactome from their origin to destination.

Suggested Citation

  • Chun Hei Li & Noortje Kersten & Nazmiye Özkan & Dan T. M. Nguyen & Max Koppers & Harm Post & Maarten Altelaar & Ginny G. Farias, 2024. "Spatiotemporal proteomics reveals the biosynthetic lysosomal membrane protein interactome in neurons," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55052-w
    DOI: 10.1038/s41467-024-55052-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55052-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55052-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nouf N. Laqtom & Wentao Dong & Uche N. Medoh & Andrew L. Cangelosi & Vimisha Dharamdasani & Sze Ham Chan & Tenzin Kunchok & Caroline A. Lewis & Ivonne Heinze & Rachel Tang & Christian Grimm & An N. Da, 2022. "CLN3 is required for the clearance of glycerophosphodiesters from lysosomes," Nature, Nature, vol. 609(7929), pages 1005-1011, September.
    2. Sara Cuylen & Claudia Blaukopf & Antonio Z. Politi & Thomas Müller-Reichert & Beate Neumann & Ina Poser & Jan Ellenberg & Anthony A. Hyman & Daniel W. Gerlich, 2016. "Ki-67 acts as a biological surfactant to disperse mitotic chromosomes," Nature, Nature, vol. 535(7611), pages 308-312, July.
    3. Hankum Park & Frances V. Hundley & Qing Yu & Katherine A. Overmyer & Dain R. Brademan & Lia Serrano & Joao A. Paulo & Julia C. Paoli & Sharan Swarup & Joshua J. Coon & Steven P. Gygi & J. Wade Harper, 2022. "Spatial snapshots of amyloid precursor protein intramembrane processing via early endosome proteomics," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    4. Maaike S. Pols & Eline van Meel & Viola Oorschot & Corlinda ten Brink & Minoru Fukuda & M.G. Swetha & Satyajit Mayor & Judith Klumperman, 2013. "hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins," Nature Communications, Nature, vol. 4(1), pages 1-12, June.
    5. Jay Xiaojun Tan & Toren Finkel, 2022. "A phosphoinositide signalling pathway mediates rapid lysosomal repair," Nature, Nature, vol. 609(7928), pages 815-821, September.
    6. Rose Willett & José A. Martina & James P. Zewe & Rachel Wills & Gerald R. V. Hammond & Rosa Puertollano, 2017. "TFEB regulates lysosomal positioning by modulating TMEM55B expression and JIP4 recruitment to lysosomes," Nature Communications, Nature, vol. 8(1), pages 1-17, December.
    7. Anand Patwardhan & Sabine Bardin & Stéphanie Miserey-Lenkei & Lionel Larue & Bruno Goud & Graça Raposo & Cédric Delevoye, 2017. "Routing of the RAB6 secretory pathway towards the lysosome related organelle of melanocytes," Nature Communications, Nature, vol. 8(1), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruyi Fan & Fen Zhao & Zhou Gong & Yanke Chen & Bao Yang & Chen Zhou & Jie Zhang & Zhangmeng Du & Xuemin Wang & Ping Yin & Liang Guo & Zhu Liu, 2023. "Insights into the mechanism of phospholipid hydrolysis by plant non-specific phospholipase C," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Pasqualina Colella & Ruhi Sayana & Maria Valentina Suarez-Nieto & Jolanda Sarno & Kwamina Nyame & Jian Xiong & Luisa Natalia Pimentel Vera & Jessica Arozqueta Basurto & Marco Corbo & Anay Limaye & Kar, 2024. "CNS-wide repopulation by hematopoietic-derived microglia-like cells corrects progranulin deficiency in mice," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    3. Eutteum Jeong & Rose Willett & Alberto Rissone & Martina Spina & Rosa Puertollano, 2024. "TMEM55B links autophagy flux, lysosomal repair, and TFE3 activation in response to oxidative stress," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Dylan Hong Zheng Koh & Tomoki Naito & Minyoung Na & Yee Jie Yeap & Pritisha Rozario & Franklin L. Zhong & Kah-Leong Lim & Yasunori Saheki, 2023. "Visualization of accessible cholesterol using a GRAM domain-based biosensor," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Gaurav Kumar & Prateek Chawla & Neha Dhiman & Sanya Chadha & Sheetal Sharma & Kanupriya Sethi & Mahak Sharma & Amit Tuli, 2022. "RUFY3 links Arl8b and JIP4-Dynein complex to regulate lysosome size and positioning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    6. Ravi Chawla & Jenna K. A. Tom & Tumara Boyd & Nicholas H. Tu & Tanxi Bai & Danielle A. Grotjahn & Donghyun Park & Ashok A. Deniz & Lisa R. Racki, 2024. "Reentrant DNA shells tune polyphosphate condensate size," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Rahul Kumar & Maleeha Khan & Vincent Francis & Adriana Aguila & Gopinath Kulasekaran & Emily Banks & Peter S. McPherson, 2024. "DENND6A links Arl8b to a Rab34/RILP/dynein complex, regulating lysosomal positioning and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Tal Keren-Kaplan & Amra Sarić & Saikat Ghosh & Chad D. Williamson & Rui Jia & Yan Li & Juan S. Bonifacino, 2022. "RUFY3 and RUFY4 are ARL8 effectors that promote coupling of endolysosomes to dynein-dynactin," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    9. Alessia Calcagni’ & Leopoldo Staiano & Nicolina Zampelli & Nadia Minopoli & Niculin J. Herz & Giuseppe Tullio & Tuong Huynh & Jlenia Monfregola & Alessandra Esposito & Carmine Cirillo & Aleksandar Baj, 2023. "Loss of the batten disease protein CLN3 leads to mis-trafficking of M6PR and defective autophagic-lysosomal reformation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Tomoki Naito & Haoning Yang & Dylan Hong Zheng Koh & Divyanshu Mahajan & Lei Lu & Yasunori Saheki, 2023. "Regulation of cellular cholesterol distribution via non-vesicular lipid transport at ER-Golgi contact sites," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    11. Yu Zhao & Zhongfeng Ye & Donghui Song & Douglas Wich & Shuliang Gao & Jennifer Khirallah & Qiaobing Xu, 2023. "Nanomechanical action opens endo-lysosomal compartments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. James L. Daly & Chris M. Danson & Philip A. Lewis & Lu Zhao & Sara Riccardo & Lucio Filippo & Davide Cacchiarelli & Daehoon Lee & Stephen J. Cross & Kate J. Heesom & Wen-Cheng Xiong & Andrea Ballabio , 2023. "Multi-omic approach characterises the neuroprotective role of retromer in regulating lysosomal health," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Kayo Hibino & Yuji Sakai & Sachiko Tamura & Masatoshi Takagi & Katsuhiko Minami & Toyoaki Natsume & Masa A. Shimazoe & Masato T. Kanemaki & Naoko Imamoto & Kazuhiro Maeshima, 2024. "Single-nucleosome imaging unveils that condensins and nucleosome–nucleosome interactions differentially constrain chromatin to organize mitotic chromosomes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Juliette Ferrand & Juliette Dabin & Odile Chevallier & Matteo Kane-Charvin & Ariana Kupai & Joel Hrit & Scott B. Rothbart & Sophie E. Polo, 2025. "Mitotic chromatin marking governs the segregation of DNA damage," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55052-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.