RUFY3 and RUFY4 are ARL8 effectors that promote coupling of endolysosomes to dynein-dynactin
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-28952-y
Download full text from publisher
References listed on IDEAS
- In-Gyun Lee & Mara A. Olenick & Malgorzata Boczkowska & Clara Franzini-Armstrong & Erika L. F. Holzbaur & Roberto Dominguez, 2018. "A conserved interaction of the dynein light intermediate chain with dynein-dynactin effectors necessary for processivity," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
- Amra Saric & Spencer A. Freeman & Chad D. Williamson & Michal Jarnik & Carlos M. Guardia & Michael S. Fernandopulle & David C. Gershlick & Juan S. Bonifacino, 2021. "SNX19 restricts endolysosome motility through contacts with the endoplasmic reticulum," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
- Camilla Raiborg & Eva M. Wenzel & Nina M. Pedersen & Hallvard Olsvik & Kay O. Schink & Sebastian W. Schultz & Marina Vietri & Veronica Nisi & Cecilia Bucci & Andreas Brech & Terje Johansen & Harald St, 2015. "Repeated ER–endosome contacts promote endosome translocation and neurite outgrowth," Nature, Nature, vol. 520(7546), pages 234-238, April.
- Gaurav Kumar & Prateek Chawla & Neha Dhiman & Sanya Chadha & Sheetal Sharma & Kanupriya Sethi & Mahak Sharma & Amit Tuli, 2022. "RUFY3 links Arl8b and JIP4-Dynein complex to regulate lysosome size and positioning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
- Rose Willett & José A. Martina & James P. Zewe & Rachel Wills & Gerald R. V. Hammond & Rosa Puertollano, 2017. "TFEB regulates lysosomal positioning by modulating TMEM55B expression and JIP4 recruitment to lysosomes," Nature Communications, Nature, vol. 8(1), pages 1-17, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Eutteum Jeong & Rose Willett & Alberto Rissone & Martina Spina & Rosa Puertollano, 2024. "TMEM55B links autophagy flux, lysosomal repair, and TFE3 activation in response to oxidative stress," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Agnieszka A. Kendrick & Jenna R. Christensen, 2022. "Bidirectional lysosome transport: a balancing act between ARL8 effectors," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
- Rahul Kumar & Maleeha Khan & Vincent Francis & Adriana Aguila & Gopinath Kulasekaran & Emily Banks & Peter S. McPherson, 2024. "DENND6A links Arl8b to a Rab34/RILP/dynein complex, regulating lysosomal positioning and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rahul Kumar & Maleeha Khan & Vincent Francis & Adriana Aguila & Gopinath Kulasekaran & Emily Banks & Peter S. McPherson, 2024. "DENND6A links Arl8b to a Rab34/RILP/dynein complex, regulating lysosomal positioning and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Eutteum Jeong & Rose Willett & Alberto Rissone & Martina Spina & Rosa Puertollano, 2024. "TMEM55B links autophagy flux, lysosomal repair, and TFE3 activation in response to oxidative stress," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Luciana Renna & Giovanni Stefano & Maria Paola Puggioni & Sang-Jin Kim & Anastasiya Lavell & John E. Froehlich & Graham Burkart & Stefano Mancuso & Christoph Benning & Federica Brandizzi, 2024. "ER-associated VAP27-1 and VAP27-3 proteins functionally link the lipid-binding ORP2A at the ER-chloroplast contact sites," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Rémy Char & Zhuangzhuang Liu & Cédric Jacqueline & Marion Davieau & Maria-Graciela Delgado & Clara Soufflet & Mathieu Fallet & Lionel Chasson & Raphael Chapuy & Voahirana Camosseto & Eva Strock & Reja, 2023. "RUFY3 regulates endolysosomes perinuclear positioning, antigen presentation and migration in activated phagocytes," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Agnieszka A. Kendrick & Jenna R. Christensen, 2022. "Bidirectional lysosome transport: a balancing act between ARL8 effectors," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
- Shuwen He & John P. Gillies & Juliana L. Zang & Carmen M. Córdoba-Beldad & Io Yamamoto & Yasuhiro Fujiwara & Julie Grantham & Morgan E. DeSantis & Hiroki Shibuya, 2023. "Distinct dynein complexes defined by DYNLRB1 and DYNLRB2 regulate mitotic and male meiotic spindle bipolarity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Ricardo Celestino & Morkos A Henen & José B Gama & Cátia Carvalho & Maxwell McCabe & Daniel J Barbosa & Alexandra Born & Parker J Nichols & Ana X Carvalho & Reto Gassmann & Beat Vögeli, 2019. "A transient helix in the disordered region of dynein light intermediate chain links the motor to structurally diverse adaptors for cargo transport," PLOS Biology, Public Library of Science, vol. 17(1), pages 1-33, January.
- Lucia Cassella & Anne Ephrussi, 2022. "Subcellular spatial transcriptomics identifies three mechanistically different classes of localizing RNAs," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Gaurav Kumar & Prateek Chawla & Neha Dhiman & Sanya Chadha & Sheetal Sharma & Kanupriya Sethi & Mahak Sharma & Amit Tuli, 2022. "RUFY3 links Arl8b and JIP4-Dynein complex to regulate lysosome size and positioning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
- James L. Daly & Chris M. Danson & Philip A. Lewis & Lu Zhao & Sara Riccardo & Lucio Filippo & Davide Cacchiarelli & Daehoon Lee & Stephen J. Cross & Kate J. Heesom & Wen-Cheng Xiong & Andrea Ballabio , 2023. "Multi-omic approach characterises the neuroprotective role of retromer in regulating lysosomal health," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Kshitiz Walia & Abhishek Sharma & Sankalita Paul & Priya Chouhan & Gaurav Kumar & Rajesh Ringe & Mahak Sharma & Amit Tuli, 2024. "SARS-CoV-2 virulence factor ORF3a blocks lysosome function by modulating TBC1D5-dependent Rab7 GTPase cycle," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28952-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.